
 

 

Civil Engineering Dimension, Vol. 10, No. 2, September 2008, 99-108 
ISSN 1410-9530  print / ISSN 1979-570X online 
 

Civil Engineering Dimension
ISSN 1979-570X online © 2008 Petra Christian University

http://puslit2.petra.ac.id/ejournal

Adaptive Meshless Local Petrov-Galerkin Method with Variable 
Domain of Influence in 2D Elastostatic Problems 

 
 

Pamuda Pudjisuryadi1 

  
 

Abstract: A meshless local Petrov-Galerkin (MLPG) method that employs polygonal sub-
domains constructed from several triangular patches rather than the typically used circular sub-
domains is presented. Moving least-squares approximation is used to construct the trial 
displacements and linear, Lagrange interpolation functions are used to construct the test 
functions. An adaptive technique to improve the accuracy of approximate solutions is developed 
to minimize the computational cost. Variable domain of influence (VDOI) and effective stress 
gradient indicator (EK) for local error assessment are the focus of this study. Several numerical 
examples are presented to verify the efficiency and accuracy of the proposed adaptive MLPG 
method. The results show that the proposed adaptive technique performs as expected that is 
refining the problem domain in area with high stress concentration in which higher accuracy is 
commonly required. 
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Introduction   
 
In recent years, meshless methods have been deve-
loped as alternative numerical approaches in efforts 
to eliminate known drawbacks of the Finite Element 
Method (FEM). The main objective in developing 
meshless methods was to eliminate, or at least 
reduce, the difficulty of meshing and remeshing of 
complex structural elements. The nature of various 
approximation functions employed by meshless 
methods allows the definition of problem domains by 
simply adding or deleting nodes where desired. 
Nodal connectivity to form an element as in FEM 
method is not needed, only nodal coordinates and 
their domain of influence (DOI) are necessary to 
descretize the problem domain. Meshless methods 
may also reduce other problems associated with the 
FEM, such as solution degradation due to locking 
and severe element distortion [1]. 
 
One of these meshless method is the Meshless Local 
Petrov-Galerkin (MLPG). This method is believed to 
have a good future due to its generality in choosing 
the form of test and trial functions and also that it is 
similar to the well established Element Free Galer-
kin (EFG) method. Atluri et al. [1] proposed a new 
integration method in a local domain, based on a 
Local Symmetric Weak Form (LSWF).  
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Therefore, the MLPG method is a truly meshless 
method, and all other meshless methods can be 
derived from it, as special cases, if trial and test 
functions and the integration method are chosen 
appropriately. 
 
Pudjisuryadi and Barry [2] presented MLPG method 
using polygonal sub-domains constructed from 
several triangular patches rather than the typically 
used circular sub-domains. Moving least-squares 
(MLS) approximation is used to construct the trial 
displacements and linear, Lagrange interpolation 
functions are used to construct the test functions. An 
adaptive technique to improve the accuracy of 
approximate solutions is developed using the 
effective stress gradient as the error indicator. The 
nodal sub-domains were held constant throughout 
the subsequent adaptive analysis.  
 
In the adaptive technique, problem domain will be 
refined by placement of new nodes in area which 
local error exceeds the prescribed level. If the nodal 
configuration becomes very dense in an area, and 
domain of influence size is set to be constant, too 
many nodes will be taken into account in 
approximating the trial function. This will result in 
higher computational cost and in-effective adaptive 
technique (local characteristic of the approximation 
is lost). To alleviate this problem, variable domain of 
influence is proposed in this study. 
 
The standard MLPG formulation and MLS 
approximation can be seen in some references 
[1,2,3,4], while the effective stress gradient error 
indicator, variable domain of influence, numerical 
results and conclusion are discussed in these 
following sections. 
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Effective Stress Gradient Indicator 
 
The measure used in this work to determine if a 
patch exceeds a certain error level is the Effective 
Stress Gradient Indicator [5], EK, which is calculated 
as: 

KKK ghE =       (1) 

where hK is the characteristic size of the patch (the 
edge of the triangle patch with the smallest length), 
and  
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is the effective von Mises stress at the center of the 
patch, and  d(PKPKi) is the distance from the central 
point of the patch (PK) to the central point of the ith 
adjacent patch (PKi), as shown in Figure 1. While 

, , , , , andx y z xy xz yzσ σ σ τ τ τ  are the normal and 

shear stresses in a three dimensional body.  
 

PK 
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Fig. 1. A typical patch (shaded area) and its adjacent 
patches. 

 
Variable Domain of Influence 
 
The MLS approximation of trial function in an 
arbitrary location in a problem domain is well 
defined, if there are at least a minimum number of 
nodes which domains of influence cover that location 
of interest (has non-zero weight function on that 
location). Such minimum number of nodes depends 
on the polynomial basis function used in the MLS 
approximation.   In   2D    spatial   coordinates   [x, y], 
 

 linear and quadratic approximation of trial 
functions are as follows: 

0 1 2( )u a a x a y= + +x   (4) 

2 2
0 1 2 3 4 5( )u a a x a y a x a xy a y= + + + + +x   (5) 

where u(x) is the approximation of displacement at 
an arbitrary location x, while ai are the constants 
that define the approximation. From Equations 4 
and 5, it can be explained, that three and six nodes 
are the minimum requirements to define the 
approximation constants in linear and quadratic 
basis functions respectively. In order to make the 
MLS approximation effective throughout the sub-
sequent adaptive, the number of nodes to determine 
the constants should not be too few or too many. In 
this study, the minimum number of nodes is set to be 
four times the minimum requirements (12 and 24 
nodes for linear and quadratic basis functions 
respectively), thus the size of domain of influence will 
automatically be variable depending on the nodal 
configuration. Figure 2 shows the typical variable 
domain of influence used in MLS approximation 
with linear basis function. In the figure, black dots 
show the nodes, while crosses indicate the point 
where MLS approximation is evaluated. It can be 
seen that 12 and 15 nodes are inside the domain of 
influence of first and second point of interest (full line 
circle). The domain of influence used for second point 
of interest is forced to be larger, since smaller circle 
(dashed line circle) does not include enough number 
of nodes (only include 11 valid nodes since four nodes 
a, b, c, and d on the perimeter of the circle have zero 
weight function). Moreover, for non-convex problem 
domain, visibility criterion is employed [6], to take 
into account the material discontinuity. One of the 
simplest visibility criterion, that is the influence of a 
node to a location that is not visible is neglected 
(weight function is set to zero), is used in this study. 
Visibility is a condition where a straight line 
connecting the node and the point of interest does 
not cross the problem boundary. Domain of influence 
of such case can be seen in Figure 3. Again, cross 
sign indicates the point of interest, while black dots 
show the nodes. It can be seen that dashed line circle 
has already covered 14 nodes, but two of them (nodes 
d and e) have zero weight function and another two 
(nodes b and c) fail the visibility criterion, resulting 
in only 10 valid nodes. Thus, the domain of influence 
should be increased (full line circle) to include 
enough number of valid nodes. Note that in the new 
domain of influence, another node (a) should be 
neglected. 
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Fig. 2. Variable domain of influence used in MLS 
approximation with linear basis function of two arbitrary 
locations in problem domain Ω. 
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Fig. 3. Variable domain of influence used in MLS 
approximation with linear basis function of arbitrary 
location in problem domain Ω, after employing visibility 
criteria. 
 
Patch Tests and Numerical Examples  
 
Patch test is a procedure to assure that an element 
formulation is stable. It is originally used in the finite 
element method. Patch test is a simple test that can 
be performed numerically to check the validity of an 
element formulation and its implementation in a 
program. When an element formulation is used to 
model a structure, mesh refinement will produce a 

sequence of approximate solutions that converges to 
the exact solution [7].  
 
This procedure is adopted to check the validity of the 
proposed meshless method. Linear, quadratic, and 
cubic patch tests, with configuration as seen in 
Figure 4, are done to verify the proposed method. 
Convergence is expected as finer nodal configuration 
is used to model a structure. Moreover, exact 
solution should be achieved if the basis function used 
in the MLS approximation has the same or higher 
degree than the patch test problem (linear patch 
tests which are solved using linear or quadratic basis 
functions, and quadratic patch test which is solved 
using quadratic basis function). 
 
A unit square is chosen to represent the problem 
domain. The boundary conditions applied in each of 
the three cases as well as the prescribed tractions 
can be seen in Figure 4. The exact solutions of the 
displacement fields for linear, quadratic and cubic 
patch tests are given in Equations 6, 7, and 8 as 
follows: 

( , ) & ( , )x yu x y v x y
E E
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= = −  (6) 
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where: 
u(x, y) = displacement component in x direction. 
v(x, y) = displacement component in y direction. 
E = modulus of elasticity. 
ν = Poisson ratio. 

 
An initial 4x4 nodal distribution is used in each 
patch test and the EK error indicator limit is chosen 
to be 0.1 (F/L2). Linear, quadratic and cubic patch 
tests are named C1, C2 and C3, respectively. MLS 

( / ) xy (2 2  
 
Fig. 4. The patch tests: (a) linear displacement patch test, (b) quadratic displacement patch test and (c) cubic displacement
patch test. 
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approximation using linear and quadratic basis 
function are named B1 and B2 respectively. L2 Norm 
of displacement error, ue  calculated over the entire 

problem domain Ω is used to examine the conver-
gence in patch tests ( ue  can be used only for 

problems which exact solutions are known), and it is 
computed as: 

Ω−+−= ∫
Ω

dvvuue appexappex
u ])()[( 22  (9) 

in Equation 9, subscripts ex and app indicate exact 
and approximation and Ω indicates the problem 
domain (union of the triangular patches). The results 
of the tests are summarized in Table 1. It can be 
seen that the method proposed satisfy the patch 

Table 1. Patch tests employing the EK indicator (0.1 F/L2)) and variable DOI 

Case Step Number of nodes/patches e  (L) Max EK (F/L2) 

C1B1 1 16/18 6.24x10-14 6.52x10-13 
C1B2 1 16/18 1.38x10-15 9.89x10-15 
C2B1 1 16/18 2.55x10-03 3.34x10-01 

 2 49/72 3.51x10-04 1.69x10-04 
 3 169/288 6.30x10-05 8.56x10-02 

C2B2 1 16/18 2.34x10-15 3.33x10-01 
 2 49/72 6.66x10-13 1.67x10-01 
 3 169/288 7.57x10-10 8.33x10-02 

C3B1 1 16/18 2.27x10-03 5.53x10-01 
 2 49/72 4.69x10-04 2.92x10-01 
 3 152/261 1.52x10-04 1.45x10-01 
 4 323/587 1.86x10-04 1.22x10-01 
 5 345/630 2.47x10-04 1.06x10-01 
 6 350/640 2.43x10-04 9.65x10-02 

C3B2 1 16/18 1.17x10-03 5.23x10-01 
 2 49/72 3.57x10-04 2.77x10-01 
 3 152/261 3.06x10-04 1.51x10-01 
 4 329/598 2.75x10-04 8.73x10-02 

 

 
Fig. 5. Final Nodal Configuration in case C1B1 
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tests, that is exact solution is found directly (practi-
cally zero value of e ) if the degree of basis function 

is the same or higher then the exact solution (C1B1, 

C1B2, and C2B2), while other cases (C2B1, C3B1, 
and C3B2) show convergence. It should be noted that 
high EK indicator does not always show poor   
solution,  but  it   only   shows   the  presence  of  high 

 

 
Fig. 6. Final Nodal Configuration in case C1B2 

 

 
Fig. 7. Final Nodal Configuration in case C2B1 
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Fig.8. Final Nodal Configuration in case C2B2 
 
 

 
Fig. 9. Final Nodal Configuration in case C3B1 
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stress gradient. In case C2B2, exact solution is found 
in 1st step, but relatively high stress gradient (larger 
than EK limitation) is still detected since coarse nodal 
configuration is used. In this case, the analysis will 
continue to the next step until the prescribed error 
limit (=0.1 F/L2) is met.  
 
The final nodal configurations of the patch tests after 
sequences of adaptive procedure can be seen in 
Figure 5 to Figure10. In the figures, the nodes are 
plotted in the deformed shape of the patch. The circle 
(o) and plus (+) signs show the approximate and 
exact nodal displacement respectively. The two signs 
almost coincide to each other since the L2 Norm of 
displacement error, ue  in each test is small enough.   

Two additional numerical tests are performed to 
further evaluate the proposed method. One is a 
cantilever beam subjected to point load at the tip, 
and the other is plate with center hole under 
subjected to uni-axial traction. The illustration of the 
two tests can bee seen in Figures 11 and 12. In these 
two additional tests, only linear basis function is 
used, since reasonably good reason still can be 
achieved with less computational effort (see Table 1). 
 
A cantilever beam, as shown in Figure 11 is analyzed 
using an initial 6x4 uniform nodal distribution. The 
modulus of elasticity, E and the Poisson ratio, ν  are 

assumed as 1000 (F/L2) and 0.25, respectively, the 
maximum allowable effective stress gradient (EK) is 
chosen as 5.0 (F/L2), half of given uniform traction, P. 
 

y

D=3 (L)

 

Fig. 11. Configuration of the cantilever beam test. 
 
The analytical solution for the cantilever beam 
problem [8] is given in Equation 10, 
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Fig. 10. Final Nodal Configuration in case C3B2 
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A plate with a circular center hole, as illustrated in 
Figure 12, is analyzed using an initial 7x7 nodal 
distribution. The modulus of elasticity, E and 
Poisson ratio, ν are assumed as 10 (F/L2) and 0.25, 
respectively, the maximum allowable effective stress 
gradient, EK is set as 0.5 (F/L2), half of given uniform 
traction, P. 
 

a=1 (L)

θ

4 (L)

y

xP=1 (F/L)2

 
 

Fig. 12. Configuration of the plate with a center circular 
hole test. 

Only the right, upper quarter of the plate is analyzed 
due to problem symmetry. The corresponding 
symmetry boundary conditions consist of rollers as 
shown in Figure 12 since the plate fibers on the axis 
of symmetries (x=0 and y=0) cannot move 
perpendicular to an axis of symmetry. The plate is 
subjected to a uniform load in the x direction as 
shown above. The quarter plate has a dimension of 
4x4 units, and the quarter hole has a radius (a) of 1 
unit (L). The analytical solution is given by Atluri et 
al. [9] in Equation 11: 
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Table 2. Cantilever beam and plate with a center hole tests (Variable DOI) 

Case Step Number of nodes/patches e  (L) Max EK (F/L2) 

1 24/30 2.18x10-03 15.8 
2 75/117 7.71x10-04 10.1 
3 209/358 4.43x10-04 5.44 

Cantilever 
Beam Test 

(max EK=5.0) 
4 485/881 5.07x10-04 3.55 
1 48/70 1.67x10-01 11.0 
2 147/252 8.99x10-02 0.80 
3 199/350 8.49x10-02 0.55 

Plate With Center 
Hole Test 

(max EK=0.5)  
4 251/445 8.44x10-02 0.37 

 

 
Fig. 13. Final Nodal Configuration in cantilever beam test. 
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where r is the distance from the center of the hole, 
and θ is the angle measured from the positive x axis, 
counter-clockwise, as illustrated in Figure 12. 

 
The summary of the test results are shown in Table 
2. The final nodal configurations of the two tests are 
shown in Figures 13 and 14. In the figures, circle (o) 
and plus (+) signs show the approximate and exact 
nodal displacement respectively. The signs almost 
coincide to each other in the cantilever beam test. 
Noticeable displacement error is shown in the plate 
with a center circular hole test since the L2Norm  of 

displacement error, ue  is still relatively high. Of 

course, better result can always be obtained by 
reducing the effective stress gradient indicator, EK 
limit. 
 
Conclusion 
 
In this study, an adaptive meshless local Petrov-
Galerkin (MLPG) method that employs polygonal 
sub-domains constructed from several triangular 
patches rather than the typically used circular sub-
domains is presented. Variable domain of influence 
and effective stress gradient error indicator are used 
in the proposed adaptive technique. Linear, qua-
dratic and cubic displacement patch tests are done to 
verify the method. Two additional tests, a cantilever 
beam subjected to point load at the tip, and a plate 
with a hole subjected to uniform tension are also 
performed. 

From the results of the five test cases, the achieve-
ments and conclusions of this work are summarized 
as follows: 
1. Refinement patterns using the local effective 

stress gradient indicator (EK) for adaptive MLPG 
analysis takes place in the regions with high 
stress gradients, which usually also have the 
highest values of stress. 

2. The local effective stress gradient indicator is 
applicable to all cases since it does not require 
any exact solutions. This is a very important 
advantage of the EK error indicator. 

3. One drawback of the local effective stress 
gradient indicator is that adaptive refinement 
will occur indefinitely in regions which have an 
infinite stress solution (very high effective stress 
gradient). In order for the local EK indicator to 
decrease, the rate of decreasing effective stress 
difference must be faster than the rate of 
decreasing patch size (see Equation 1).  
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