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Abstract: The current trend of queuing theory development is toward more precision which 
requires higher mathematical manipulation. In this paper, we attempted to reverve the current 
trend toward simplification of queuing formulas such that it can be used in more practical 
purposes, especially in construction industry. Through numerical examples of two case studies 
on concreting and earth moving, how to model the construction activities as queuing systems is 
illustrated systematically.  Through the numerical examples, it is shown that when the customer 
cost is much lower than the server cost, queuing system can be simplified only to incorporate the 
constraint equation. The queueing constraint equation is suggested to be used as queuing rule of 
thumb. The proposed rule of thumb is rather conservative in term of queuing performance 
compared to the standard stochastic queuing formula because it is assumed that all the 
customers arrive at once in the beginning of the service. 
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Introduction   
 

Queuing is traditionally defined as a process where 
people, materials or information need to wait at 
certain time to get a service. Queuing theory has 
been developed since the beginning of last century 
(by A. K. Erlang in 1917). Despite all the advan-
cement of the queuing theory in almost a century, 
many people still have lack of understanding about 
how to manage queue. In our daily life, we still face a 
lot of queuing from school, to bank and from 
restaurant to toilet. We are still being frustrated 
with our daily traffic and a long queue in registration 
and security check. In fact, the queue does not 
diminish by the advancement of our knowledge in 
queuing theory, but it grows into more complex 
reasons. Public and business understanding of 
queuing is still very far from the science. For 
instance, instead of distributing the queue over time 
and space, many managers do the very common 
mistake by making policy to concentrate the demand 
over time and space. Instead of solving the queuing 
problem, they create more severe queues. The lack of 
understanding on how to solve queueing problems 
requires public education. However, we cannot 
educate queuing theory as public common know-
ledge if the required background knowledge of the 
mathematics is fairly complicated. We really need a 
much simpler version of the queuing theory that can 
be used to educate public about queuing. Hence, a 
rule of thumb for queuing performance formula is 
needed. One best part of public education is to 
educate the engineers. In this paper, I would like to 
point out how we can use queueing theory in practice 
of construction field. 
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It should be noted that this paper is not the first 

paper which discuss the applications of queuing 

theory in construction management. In fact, there 

are a few books and papers [1,2] had discussed about 

this topic in general. A study by Cheng et al [3] 

develops a construction management process re-

engineering performance measurement model by 

applying queuing theory to calculate process opera-

tion time in order to strike an optimal balance 

between process execution demand and manpower 

service capacity.  

 

To understand queueing theory fully, one need to 

have background in statistics and differential equa-

tions and to be able to manipulate Markov chain. 

Looking at the recent development of vacation 

queuing theory (example: Tian and Zhang in 2006 

[4]) and queuing network (example: Yue et al in 2009 

[5]), the trend of queuing theory development is 

toward more precision which requires higher mathe-

matical manipulation. While higher precision queuing 

theory computation is great for the body of know-

ledge, this trend also produces wider gap between 

the theory and practice. Hall [6] cited an argument 

that operation research profession could and should 

be more scientific and less mathematical. We should 

concern with how the system behave and less 

concern with abstract symbol manipulation. There-

fore, in this paper I attempted to reverse this trend 

toward simplification of queuing formula such that it 

can be used in more practical purposes, especially in 

construction industry. The presentation of the case 

studies is more qualitative than quantitative. All the 

formulas are either common sense or well known in 

the queuing theory that their proofs can be traced 

back in the references. Construction practitioners 

and engineers love simplification and rule of thumb. 



Teknomo, K. / Application of Queuing Theory in Construction Management / CED, Vol. 14, No. 3, December 2012  (Special Edition),  pp. 139-146 

 140 

It would be shown at the end of this paper that we 

can simplify our treatment of queuing system into a 

simple queuing rule of thumb. 

 

Most of the traditional literatures on queuing theory 

are using M/M/s queuing system, which assume 

Poison arrival distribution, exponential distribution 

of service time and s number of servers. In this 

paper, this tradition is also followed. Unlike these 

literatures, however, this paper describes systemati-

cally how to model the construction activities into a 

queuing system. After showing the formulas, I also 

extend the treatment of M/M/s queuing model in the 

existing books and papers into economic analysis 

and finally to come out with a simple queuing rule of 

thumb. 

 

Case Study 1: Concreting 
 

In this first case study, we are looking at concreting 

activity as a queuing system. Unlike queuing in 

supermarket where there is a single server to serve 

one customer, concreting operation requires many 

agents such as crane, hoist or bucket or concrete 

pump, placement crew, and vibrating crew as well as 

concrete trucks. The clutters in the agents may 

become the source of misunderstanding on how to 

model concreting activity as a queuing system. 

Which agents will play role as servers and which 

agent should play role as customers in the queuing 

system? What kind of optimization we would like to 

model through the queuing system? How many 

servers should we provide? 

 

Two main components of a queuing system are 

customers and servers. Customer is person or thing 

that demands for service. Customer does not have to 

be a person and does not necessarily have to wait for 

service. Servers provide service to the customers. 

 

In the case of concreting activities, which agents are 

the servers and which agents are the customers? My 

suggestion to solve this problem is to use a simple 

technique as the following. First, we identify stake-

holders and then we find out the flow of activity in 

which we say that every type of agents is a server for 

their immediate customers. After that, we take side 

with the stakeholder and identify the most expensive 

agents as the servers. 

 

Let us identify the two stakeholders: contractor and 

concrete company. From the contractor point of view, 

the concrete trucks are the customers and what they 

provide, the crew and crane with bucket or the 

concrete pumps, are the servers. From the concrete 

company’s point of view, the concrete trucks are the 

servers while all the concrete pumps equipments 

and placement crew from the contractor’s side are 

the customers. For the sake of uniformity, let us take 

side with the contractor point of view. The other 

point of view would be equivalent anyway. 

 

Now we can look at the flow of the concreting 

activities and say that the crane and bucket (or the 

concrete pump or hoist) is the server for the concrete 

trucks. The placement and vibrating crew are the 

servers for the crane and bucket. Using this serial 

system, as we identify the most expensive agent, the 

concrete pumps should be identified as the servers 

for both the crew and the concrete trucks. 
 

Queuing theory is rich with optimization. Our next 

problem is to answer what kind of optimization we 

would like to model through the queuing system? In 

our concreting activities, the placement and vibrat-

ing crew are usually the ordinary workers that 

always available on the construction site. These 

servers must operate together to serve single cus-

tomers of the concrete truck. If one of the servers is 

not available, the service of concreting cannot be 

done. Thus, normally we do not want to optimize the 

number of the crew. In fact, the number of place-

ment crew is directly related to the number of 

concrete pumps or the hoists or the cranes. Say, to 

place and vibrate  cubic meter of concrete per hour, 

we need x number of crew. If each concrete pump 

will provide g
 
cubic meter of concrete per hour, we 

can easily find the number of required total crew to 

serve the n concrete pumps as: 

Xn = n 








v

g.x
 (1) 

 

 
 

Figure 1. Concreting Activities as a Serial Queuing System. Concrete Pump is the Server for Both Systems 
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The notation  is ceiling function to get the lowest 

integer that higher than the argument. The unit 

time can be set as either hour or minute as conve-

nient of the modeler. For uniformity, we use hourly 

unit of time. 

 

The direct relation between the number of crew and 

the number of concrete pumps simplifies our 

queuing system. Instead of having a serial queues, 

we can now combine the placement crew with their 

equipments (such as concrete pump, or crane, with 

bucket or hoist) as one unit. We would like to 

optimize the number of servers, which is the number 

of concrete pumps (or cranes or hoists). Our 

optimization problem becomes how many concrete 

pumps (and eventually the crew) we would like to 

provide such that we can accomplish the concreting 

activities at minimum cost. Let us assume, just at 

the moment, that the number of crew and the 

number of concrete trucks that can be hired are 

unlimited and the space for the concrete trucks and 

concrete pumps are also unlimited. Later we will 

visit and release these assumptions. 

 

If we provide too many concrete pumps, we may 

accomplish the concreting activities faster but it is 

also at higher cost of renting the concrete pumps and 

hiring the crew. In other words, by adding the 

number of servers, the queuing system incurs higher 

server cost. 

 

If we provide too few concrete pumps, we may think 

that the total cost of the queuing system will be 

lower due to lower cost. However, when we provide 

less number of servers, the delay of the concrete 

trucks will be more than necessary. If the waiting 

time of the concrete trucks is too long, the concrete 

will be hardened and the overall concreting activities 

will be delayed and the overall cost will be even 

higher. Thus, at less number of servers, the queuing 

system incurs higher customers cost. 

 

As we think in term of system, the total cost of 

queuing system must include both server side and 

customer side. Optimal situation happens when both 

concrete trucks and concrete pumps would be 

minimal. Let us give notation Cs to a constant unit 

server cost which includes the renting of one unit of 

concrete pump together with hiring cost of the crew 

to serve one concrete pump. Notation Cc indicates a 

unit customer cost function which includes the 

waiting cost of one concrete truck per hour. It should 

be noted that Cc is a function of time rather than a 

constant, because the unit cost is higher significantly 

when the waiting time is longer. Since the behavior 

of this function over time is gradual increase at low 

waiting time and sudden increase until infinity at 

higher waiting time (due to hardening of the 

concrete), an exponential function with shape para-

meter beta will serve the purpose of this function. 

Parameter alpha is used to scale the value of the cost 

linearly. 

cc =  exp (t)  (2) 
 

To find the value of the parameters, we need to use 
non-linear regression. Taking the natural logarithm 
of both side of Equation 2 produces a simple linear 
regression equation ln cc = ln  + t. If we have at 
least two points to calibrate the regression, the 
parameter values can be easily found. For instance, 
we have range of time t in hour. We would consider 
the customer cost to be very high (say, $10,000 or 
more) if the waiting time is more than 3 hours due to 
risk of hardening of the concrete. If the waiting time 
is 30 minutes, the customer cost would be $1000. 
Inputting points (0.5, $1000) and (3.0, $10,000) into 
the linear regression equation produces  = 630.96 

and  = 0.92. 
 
Then, the total cost that would be minimized is 
computed as 

C = s cs + W cc   (3) 
 

While we can set schedule for the concrete trucks to 
arrive at certain regular interval, in practice 
however due to traffic condition, usually the arrival 
of the concrete trucks will be stochastic with inter 
arrival rate at the schedule time. Similarly, since the 
crew workability is now part of the queuing system, 
the service time to pour into cast and vibrate certain 
unit volume of concrete is also stochastic in nature.  
 

Given the input of average and variation of inter 
arrival time and the service time to place a unit 
volume of concrete; we can compute the value of 
average waiting time W. The model to compute the 
waiting time will be discussed in the next sections of 
this paper. For a number of server s, we compute the 
total cost C based on equation (3). The optimum 
number of server is the one that minimize the total 
cost. 

 
Case Study 2: Earth Moving 
 

Carmichaela [7] explained the application of queuing 
theory for earth moving. The paper discussed the 
assumptions on the service discipline, on steady-
state behavior and on the probability distributions 
for the service times. My treatment here is more 
qualitative in nature. 

 
 

Figure 2. Concreting Activities as a Simple Queuing 
System. 
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Figure 3. Exponential Function of Unit Customer Cost 

 

In this second case study, we see earth moving 

activity as a queuing system. Earth moving activities 

have several agents: the excavators, the dump trucks 

and the loader (i.e. bulldozer). On the source of the 

quarry, the excavators cut the top soil and fill into 

the dump truck. The dump trucks then bring the 

soils to the construction site, dump the soils and the 

loader are ready to spread the soils to fill or to create 

the landscape of the land. We are faced with the 

same simple questions again: how to model earth 

moving activity as a queuing system? Which agents 

are the servers and which agent are the customers? 

What kind of optimization we would like to model 

through the queuing system? How many servers 

should we provide? 

 

First, let us attempt to answer how to model earth 

moving activity as a queuing system. In earth 

moving activity, we may have three separate stake-

holders: the quarry owner which operates the exca-

vator, the transportation company which operates 

the dump truck and the contractor who operates the 

loader. From each stakeholder points of view, they 

may think that they provide the service to the 

customer. The quarry owner may think the exca-

vator is the server and the dump truck is the 

customer. The trucking company will think that the 

dump truck is the server to serve the excavator and 

the loader. Similarly, the contractor may think the 

loader is the server to the dump truck. 

 

It is also possible that the three stakeholders are 

actually one company. In this case, we will have 

system point of view. Looking at the flow of the earth 

moving activity, we have a serial queueing system 

Excavators  Dump trucks  Loaders.  

 

If the distance between quarry and the construction 

site is relatively big that the traffic conditions may 

affect the order of arrival of the dump trucks, we 

may treat the serial queuing system as two separate 

queuing systems. First queuing system happens in 

the quarry where excavators are the server and the 

dump trucks are the customers. The dump trucks 

are waiting for the excavators to be filled. The second 

queuing system happens in the construction site 

where the loaders are the server to the dump trucks. 

The trucks are waiting for the loader to clear the 

filled soil before it can dump the soil to the next slot.  
 

The large distance assumption between quarry and 

the construction site will greatly simplify our 

queuing systems. From this point of view, when we 

identify the most expensive agents as the servers (in 

term of rental fee per hour), it reveals that the dump 

trucks are the customers for both queuing systems.   

 

To answer what kind of optimization we would like 

to model through the queuing system, let us assume 

for the moment that we can hire unlimited dump 

truck, and the space for the trucks to queue for both 

excavators in the quarry and loader in the construc-

tion site are also unlimited. Similar to the previous 

case study, we will visit and release these assump-

tions later. 

 

Since both queuing system in the quarry and in the 

construction site has similar characteristics, for 

simplicity of the explanation, only the quarry site 

will be discussed. 

 

 
Figure 4. Earth Moving Activities as a Serial Queuing 

System. Dump Truck is the customer for both Queuing 

Systems. 

 

        

 
 

Figure 5. Earth Moving Activities as Two Simple Queuing 

Systems 
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If we provide too many excavators, we can finish the 

earth moving activity faster at higher cost of renting 

the excavators. Clearly, providing higher number of 

servers incurs higher server cost. On the other hand, 

providing too few excavators will create long queue 

for the trucks to wait and the overall earth moving 

activities will be delayed. Eventually, in this case the 

overall cost will be higher. Thus, providing lower 

number of servers incurs higher customers cost. 

 

With similar reasoning to the first case study of 

concreting, we can use Equation 2 and Equation 3 to 

find the optimum number of servers (that is the 

number of excavators or the number of loaders) that 

will minimize the total cost of the queuing system. 

Note, in contrast to that in the literatures (such as 

Carmichaela [7]), exist what is called Griffis’ 

Application of Queuing Theory to determine the 

number of trucks to perform earth moving activities. 

In this paper, we will not consider this application.  

 

Queuing Models 
 

Having the two case studies of concreting and earth 

moving, in this section we would like to have an 

integrated treatment of the two case studies. Even 

though the agents of the two case studies are 

different, they can be abstracted simply as servers 

and customers. Having this abstraction, we can now 

treat them as a simple queuing system. 

 

The servers are characterized by service time 

distribution. In a simplified queuing theory, we can 

have either stochastic or deterministic service time. 

When we have stochastic service time and the 

variation of the service time is equal or almost equal 

to the average service time, we say that the service 

time is having or approaching Markovian distribu-

tion. In this case, the service time distribution fits 

into exponential distribution with mean  is equal to 

the variance 
s
2. 

 

The customers are characterized by arrival distri-

bution. When we have stochastic arrival distribution 

and the variation is equal or almost equal to the 

arrival rate, we say that arrival having or approach-

ing Markovian distribution.  In this case, the discrete 

arrival distribution fits into Poisson distribution with 

mean  is equal to the variance a
-2. Note in this 

case, the inter arrival rate -1
 is simply an inverse of 

the arrival rate and the distribution of inter arrival 

rate would be exponential distribution. 
 

The actual distributions of service time and arrival 

should be gathered and fit into the closest theoretical 

statistical distribution and then the appropriate 

formulas for queuing theory will be used to predict 

the performance of the queuing system. If the appro-

priate formulas of the queuing theory for the proper 

distribution are not available, we need to build 

simulation model. In practice, however, we often 

want to simplify this process because building a 

specific simulation model may require some cost on 

itself. When the mean is equal to variance for both 

distributions of service time and arrival, we can use 

most often used queuing formulas. The Kendal 

notation of such queuing system would be M/M/s, 

where the first letter is to indicate arrival distri-

bution, the second letter is to indicate the service 

time distribution, and the third letter represents the 

number of servers. For this type of queuing system, 

we can compute the performance of the queuing 

system in term of the average number of customer in 

the system (in waiting line and being served) as: 
 

   

1
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1 !
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q
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(5)

 
 

is defined as probability that there is no customer in 

the system. The ratio of arrival rate and service rate 

is given as: 
 







  

(6)

 
 

The average time a customer spends in the system 

in waiting line and being served is computed using 

Little’s Law 

L
W




  

(7)

 

Now if the mean is not equal to the variance, we 

need more general type of queuing system, which 

Kendal notation would be G/G/s. Unfortunately, the 

formula of the queuing performance for general type 

queuing system does not exist yet. Only the 

approximation of G/G/s queuing system is available 

(Allen & Cunneen’s as cited by Hall [6]). Given the 

coefficient of variation for inter-arrival time Ca
 
and 

coefficient of variation for service time Cs, we can 

compute the average customers in waiting line 

waiting for service as: 
2 2

( / / ) ( / / )
2

a s
q q

c c
L G G s L M M s

 
   

    

(8)

 
The average queue length follows the first part of 

Equation 4 and the average waiting time follows the 

Little’s law in Equation 7. 

 

Earlier in the first case study, we have assumed 

unrealistically that the space for the concrete trucks 
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and concrete pumps are also unlimited. Similarly, in 

the second case study, it was assumed unrealistically 

that the space for the dump trucks to queue for both 

excavators in the quarry and loader in the construc-

tion site are also unlimited. We can release these 

assumptions by setting the limiting capacity on the 

number of customers that can be accommodated in 

the queuing system. The Kendal notation of this type 

of queuing system is M/M/s/N, where the last letter 

indicates the capacity of customers that can enter 

the queuing system. This type of queuing also means 

that the trucks that are not allowed to enter the 

quarry or construction site when the space capacity 

has been reached. 

 

Another unrealistic assumption involves unlimited 

number of placement & vibrating crew, the number 

of concrete trucks or dump truck that can be hired. 

We can release this kind of assumption on the size of 

the calling source by limiting the number of cus-

tomers. The Kendal notation of this type of queuing 

system is M/M/s/N/N where the last letter indicates 

the size of the customers. 

 

With the removal of unrealistic assumptions above, 

we have discussed fully on how to model the 

examples of construction management case studies 

into queueing system. The next section will describe 

simple analysis based on the formulas above. 

 

Queuing Analysis 
 

In this section, I will give numerical illustration of 

applying the queuing formulas above for the first 

case study of concreting. The second case study bears 

similar technique, and therefore shall not be repeated. 

 

In this analysis, we would like to answer two 

questions on: 

What is the typical schedule of the concrete 

trucks such that the concrete pumps will not 

get idle 90% of the time?  

What is the optimum number of server? 

 

To make the problem more quantitative, the typical 

values are given as follow. Suppose we would like to 

cast concrete of one floor of a building with volume of 

1500 cubic meters. As typical concrete truck can 

carry about 6 cubic meter, the activity requires about 

250 trucks. A concrete pump has typical capacity of g 

= 50 cubic meters per hour. Thus, one concrete pump 

can serve about  = 8 concrete trucks/hour. The 

concreting activity of one floor may require 30 

concrete pumps to be finished in an hour, or 30 hours 

using only single concrete pump. Renting cost of a 

concrete pump is $150/hour and labor cost to place 

and vibrate 50 cubic meters of concrete in an hour is 

about $100/hour. This gives unit server cost of Cs
 
= 

$250/hour. The unit customer cost follows the pre-

vious explanation of using exponential function of 

Equation 2. 

 

To answer the first question of truck schedule, we 

use Equations 5 and 6 by inputting  = 8 concrete 

trucks/hour for various number of server s and 

customer arrival rate  such that the idle probability  

P0 is less than or equal to 10%. It should be noted 

that within queuing theory, there is a constraint that 

the utilization of the queuing system must not be 

larger than one. If the utilization is larger than one, 

the queue length and waiting time would be at 

infinity. 
 

1U
s s

 


  

  

(9) 

 

Since Equation 5 involves summation with no closed 
form, it is simpler to build a simulation program 
than to solve it mathematically. Thus, I made a 
simple computer program to solve the problem 
above. Figure 6 shows the result of relationship 
between idle probability and customer arrival rate. 
The horizontal line indicates the threshold proba-
bility of 10%. The horizontal line intersects the curve 
at 18.5 trucks per hour. It means that to ensure the 
concrete pump will not be idle 90% of the time, the 
concrete trucks should arrive every 3.25 minutes. 
 
The analysis also showed that the minimum number 
of servers is 5 concrete pumps with average queue 
length of 2.4 trucks and average waiting time of 7.8 
minutes. It should be noted that these last three 
numbers were obtained without even use the cost 
values. The minimum number of servers is obtained 
based on constraint Equation 9 and idle probability 
(Equation 5) by applying arrival rate of 18.5 trucks 
per hour and service rate of 8 trucks per hour such 
that the idle probability is about 10% (we use 
absolute difference between idle probability and the 
threshold should be less than a very small positive 
value).  
 

 

Figure 6. Relationship Between Arrival Rate and Idle 

Probability of the First Case Study 
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Figure 7. Economic Analysis of Queueing System 

 

Once the idle probability is known, the average queue 

length and average waiting time follows Equations 4 

and 7. Readers who are interested to find the effect 

of variation may use Equations 8 and 7. 

 

Incorporating the costs Equations 2 and 3 using the 

same arrival rate of 18.5 trucks per hour and service 

rate of 8 trucks per hour produces minimum number 

of servers of 3 concrete pumps with average queue 

length of 4.33 trucks and average waiting time of 14 

minutes. The idle probability is only 6%, and there-

fore, this is the better solution. Figure 7 shows that 

the customer cost is much lower than the server cost 

and therefore the optimum number of server follow 

the minimum number of servers is following only 

Equation 9. 
 

This result gives implication that in case the cus-

tomer cost is much lower than the server cost, the 

queuing system can be simplified into constrain 

equation. In other words, we can use the constraint 

Equation 9 as queuing rule of thumb. 

 

Queuing Rule of Thumb 
 

Most queuing books offer rather complicated mathe-

matical formulas to compute queuing performance 

similar to equation (4) and (5). While computing 

these formulas using computer is very straight-

forward, in practice in the field, engineers often need 

much simpler formula which does not give accurate 

results but safe enough for the design. The formula 

is based on rewriting of the constraint equation (9). 

The queuing rule of thumb formula I present here has 

benefit of simplicity. It is so simple that people can 

even memorize it. 
 

N
s

T


  (10)

 

 

Where 

T  = total time to serve N customers 

s  = number of servers 

N  = number of customers 

  = service time 

 

Compared to the actual queuing formula, the 

proposed queuing rule provides only very rough 

approximation. The purpose of the rule of thumbs is 

not to gain precision or optimization. The aim is to 

gain understanding of the current queuing situation 

and to give the layman simple tools to solve queuing 

problem more creatively. The queuing rule of thumb 

is not the replacement of standard practice and the 

queuing theory itself. The short survey should only 

be used as feasibility tool towards more precise 

standard practice. 

 

In term of performance, the rule of thumb is rather 

conservative compared to the standard stochastic 

queuing formula because it is assumed that all the N 

customers arrive at once in the beginning of the 

service.  

 

Conclusions and Summary 
 

How to model the examples of construction mana-

gement case studies into queueing system has been 

discussed. Through the numerical examples, it was 

shown that when the customer cost is much lower 

than the server cost, queuing system can be 

simplified only to incorporate the constraint equa-

tion. I suggest to the constraint equation as queuing 

rule of thumb when we deal with simplified queuing 

theory. 

 
To anticipate many queuing problems, we can 

estimate the number of servers and service perfor-

mance based on demand that arrive at once and its 

service time without complicated formulas. The key 

to solve most queuing problem is on the modeling 

customers and servers. 

 
Through case studies of concreting and earth moving 

activities, I will like to encourage Civil Engineers 

and Construction Managers to use the vast know-

ledge of queueing theory that have been developed 

by mathematicians and management scientists for 

about a century. 
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