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ABSTRACT 
 
In recent years, meshless methods have gained their popularity, mainly due to the fact that absolutely no 
elements are required to discretize the problem domain. This is possible due to the nature of the approximation 
functions used in this method. Approximation functions used to form the shape functions use only the so-called 
“nodal selection” procedure without the need of elements definition. The most popular approximation function 
used is the moving least-squares shape functions. Published works in meshless methods, however, present only 
the basic formulas of the moving least-squares shape functions. This paper presents the complete and detailed 
derivations of not only the moving least-squares shape functions, but also their derivatives (up to the second 
order derivatives), using the exponential weight function. The derivations are then programmed and verified. 
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INTRODUCTION   
 
The major drawback of the finite element method, 
currently the most popular numerical method to 
solve engineering problems, is its requirement for 
the cumbersome re-meshing procedure as the 
geometry of the problem domain changes conti-
nuously. This happens a lot in engineering problems 
involving large deformations and liquid sloshing. 
Meshless methods provide interesting alternatives to 
solve this problem as they do not require the re-
meshing procedure. In these methods, only nodal 
definition is needed to discretize the problem 
domain. Since their first introduction, various kinds 
of meshless methods have been proposed, such as 
Smoothed Particle Hydrodynamics [1], Reproducing 
Kernel Particle Method [2], Element-Free Galerkin 
[3], Meshless Local Petrov-Galerkin [4], and Finite 
Point Method [5].  
 
Though these methods may use different approach 
to build the meshless methods, all of them require 
the use of an approximation function to develop the 
shape function. The most popular approximation 
function for developing meshless methods’ shape 
function is the moving least-squares (MLS) 
approximation [6]. MLS is very popular because it 
does not require an explicit mesh. The mesh is 
replaced by a nodal search/selection technique 
instead.  This gives the “meshless” property. Another  
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important feature of MLS is that its shape functions 
provide smooth approximations of function values 
across irregular grids of data points.  
 
The published works in this area usually state only 
the main equations of MLS approximation because 
they focus mainly on the approach of the proposed 
meshless method. The use of MLS approximation 
usually requires a weight function to be used and, 
depending on the engineering problems to be solved, 
the derivations of the shape function derivatives. 
This paper shows the complete and detailed 
derivations of MLS shape function and its 
derivatives, up to the second order derivatives, using 
the exponential weight function. 

 
MOVING LEAST-SQUARES (MLS) 

APPROXIMATION 
 
The MLS approximation, introduced by Lancaster 
and Salkauskas [6], is local. At any arbitrary 
evaluation point x, only the neighboring nodes in 
whose domain of influence point x resides are 
consequential. The influence of a node xi is governed 
by a decreasing weight function ( )iw w= −ix x , 

which vanishes outside the domain of influence of 
node xi. 
 
In the MLS approximation, the approximation 
function ( )hu x  of the function ( )u x  is defined by: 

1
( ) ( ) ( )

m
h

i i
i

u p a
=

= ∑x x x  , (1) 
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where m is the number of terms in the basis, and 
( )ip x  are monomial basis functions. The general 

form of the complete set of sth order basis functions 
may be expressed as: 

2( ) 1, , ,........., s
ip x x x⎡ ⎤= ⎣ ⎦x    in one dimension, (2) 

and   
1 1( ) 1,......., , ,.... ,s s s s

ip x x y xy y− −⎡ ⎤= ⎣ ⎦x in two dimen-

sions.  (3) 
 
For the case of 2D MLS approximation, the com-
monly used bases are: 

[ ]( ) 1, ,ip x y=x for a linear basis , (3a) 

and   
2 2( ) 1, , , , ,ip x y xy x y⎡ ⎤= ⎣ ⎦x  for a quadratic basis.  (3b) 

Lancaster and Salkauskas [6] define a local MLS 
approximation as: 

1
( , ) ( ) ( )

m
h

i i
i

u p a
=

=∑x x x x . (4) 

The terms ( )ip x  are functions of the coordinate x  

of the evaluation point. The coefficients ( )ia x  in 

Equation 1 and Equation 4 are functions of the 
spatial coordinates x. These coefficients can be 
obtained by minimizing a weighted, discrete L2-
Norm as follows: 

2

1
( )( ( , ) ( ))

n
h

I
J w u u

=

= − −∑ I I Ix x x x x   (5a) 

or  
2

1 1

ˆ( ) ( ) ( )
n m

i i I
I i

J w p a u
= =

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑ ∑I Ix x x x , (5b) 

where n is the number of nodes, in whose domain of 
influence x resides, and ˆIu  is the nodal value of 

( )u x  at = Ix x . In the domain of influence of node I 

the weight function ( ) ( )Iw w= − Ix x x  has a non-
zero value. This domain of influence is typically 
defined as circular in two-dimensional applications. 
Equation 5b can be rewritten in the form: 

( ) ( )Tˆ ˆ( )J = − −Pa u W x Pa u , (6) 

where 

[ ]T
1 2ˆ ˆ ˆ ˆ, ,....., nu u u=u ,  (6a) 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

m

m

n n m n

p p p
p p p

p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x
x x x

P

x x x

K

K

M M O M

K

, (6b) 

and 

1

2

3

( ) 0 0
0 ( ) 0

( )

0 0 ( )

w
w

w

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

x x
x x

W x

x x

L

L

M M O M

L

. (6c) 

 
The stationary nature of J in Equation 5b with 
respect to ( )a x  leads to the following linear relation 

between ( )a x  and ˆIu : 

ˆ( ) ( ) ( ) 0J∂
= − =

∂
A x a x B x u

a
, (7) 

where the matrices A(x) and B(x) are given as: 
T( ) ( )=A x P W x P , (7a) 

and   
T( ) ( )=B x P W x , (7b) 

and thus a(x) can be written as 
ˆ( ) ( ) ( )= -1a x A x B x u .  (8) 

The approximation ( )hu x  can then be expressed as: 

1

ˆ( ) ( )
n

h
II

I
u uφ

=

=∑x x , (9) 

where the shape functions ( )
Iφ x  are defined as 

T 1

1
( ) ( ),........, ( ) ( ) ( )

I nφ φ φ −⎡ ⎤= =⎢ ⎥⎣ ⎦
x x x p A x B x . (9a) 

 

It should be noted that the approximation in 
Equation 9a is no longer a polynomial even if the 
basis functions p(x) are polynomials. However, if 

( )u x is a polynomial, it can be reproduced exactly by 

( )hu x with an appropriate selection of the basis 
functions. 

 
EXPONENTIAL WEIGHT FUNCTIONS 

 

The weight function ( ) ( )I Iw w≡ −x x x  appearing 
in Equation 5a is a common feature of meshless 
methods. The weight function ( )iw x corresponding 

to node I is defined such that it is a monotonically 
decreasing function of the Euclidean distance 

between x and xI, I−x x . The domain in which 

the value of the weight function is non-zero is called 
the support of the weight function. This support is 
often termed the domain of influence of a node. The 
most commonly used shapes of the domain of 
influence are discs and rectangles in 2D and spheres 
in 3D.  
 
The model shown in Figure 1 employs circular nodal 
domains of influence of constant size. The problem 
domain Ω  is indicated by a bold line and lighter 
lines are used to represent the domains of influence 
of the weight functions of each node. Each sub-
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domain IΩ  is associated with a particular node. 
Note that the overlap of the discs in a real 
computation is considerably more than the overlap 
shown in Figure 1. The nodal weight functions 
should satisfy certain conditions as follows: 
 

 

Figure 1.  An Example of a Problem Domain and The Circular-
Shaped Domains of Influence of its Nodes [7] 

 
Inside the problem domain Ω , the weight functions 
should be non-zero only on IΩ  (the domain of 
influence of  node I) and should be equal to zero 
outside the nodal sub-domain IΩ . The weight 
function vanishes when x does not lie in the support 
of nodal point xI. This fact imparts a ‘local character’ 
to the MLS approximation. 
 
MLS weight functions should be constructed so that 
they are positive and that a unique ( )a x is gua-

ranteed. Hence, A(x) needs to be an invertible 
matrix. More specifically, the location where MLS 
approximation is desired should include a sufficient 
number of supporting nodes in whose domain of 
influence the desired location resides. This number 
of nodes should be at least equal to the number of 
terms in the basis but in practice it often must be 
significantly larger. It is also advantageous to 
construct the domain of influence to be small enough 
so that the local character of the approximation is 
maintained. The value of the weight functions 
increases as the distance between xI and x 
decreases, and vice versa.  
 
Three commonly used weight functions are the 
exponential, the cubic spline and the quartic spline, 
which can be defined, respectively, as: 

Exponential: 

( )
22

2

( / )( / )

( / )
   for   

( ) 1

0    for  > 

kk
mI I

k ImI

I

d cd c

I md c
I

I m

e e
d d

w d e

d d

−−

−

⎧ −
⎪ ≤⎪= −⎨
⎪
⎪⎩

,  (10) 

  

Cubic spline:  
2 3

2 3

2 14 4        for s
3 2

4 4 1( ) 4 4             for 1
3 3 2

      for s 10

s s

w s s s s s

⎧ − + ≤⎪
⎪
⎪= − + − < ≤⎨
⎪

>⎪
⎪⎩

,  (11) 

and 
Quartic spline:  

2 3 4     for s 11 6 8 3
( )

    for s 10
s s s

w s
≤⎧ − + −

= ⎨ >⎩
,  (12) 

where dI = ( ), Id x x  is the Euclidean distance 

between x and xI, dmI  is the radius of support of the 
weight function, ( ), /

II ms d d= x x  is the ratio of the 

distance between x and xI and the radius of the 
support, and k is a constant typically chosen to have 
the value of one. 
  
Among the weight functions listed above, the 
exponential weight function has a specific charac-
teristic where the relative weights can be controlled 
by manipulating the constant c.  When c decreases, 
higher weights are obtained on points xI close to x 
and lower weights on points far removed from x and 
vice versa. Due to this specific characteristic, the 
exponential weight function with a circular domain 
of influence is employed in this study.  
 
If the weight function ( )Iw x is continuous together 

with its first k derivatives, the shape function ( )I xφ  
will also be continuous along with its first k 
derivatives. The exponential weight function has 
unlimited continuity.  
 
For 

II md d≤ , the first derivatives of the exponential 

weight function ( )w x can be calculated symbolically 
as : 

2

2

2

( ), ( ) 2

1

I

mI

d
c

I
x I d

c

x x ew d

c e

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

− +
= −

⎛ ⎞
⎜ ⎟− +
⎜ ⎟⎜ ⎟
⎝ ⎠

,     (13a) 

and 
2

2

2

( ), ( ) 2

1

I

mI

d
c

I
y I d

c

y y ew d

c e

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

− +
= −

⎛ ⎞
⎜ ⎟− +
⎜ ⎟⎜ ⎟
⎝ ⎠

 (13b) 

where  

( ) ( )2 2
I I Id x x y y= − + − .    (13c) 
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For the case when d is equal to zero (x = xI and y = yI 

), the first derivative of w(dI) is calculated as the limit 
of w,i(dI) as d approaches zero and may be written 
as: 

, ( ) , ( ) 0x I y Iw d w d= = .  (14) 
 
Similarly, the second derivatives of the weight 
function can be computed as 

( )( )
2

2

2 2

4

2
, ( ) 2

1

I

mI

d
c

I

xx I d
c

x x c e
w d

c e

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟⎝ ⎠

− −
= −

⎛ ⎞
⎜ ⎟− +
⎜ ⎟⎜ ⎟
⎝ ⎠

,  (15a) 

( )( )
2

2

2 2

4

2
, ( ) 2

1

I

mI

d
c

I

yy I d
c

y y c e
w d

c e

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

− −
= −

⎛ ⎞
⎜ ⎟− +
⎜ ⎟⎜ ⎟
⎝ ⎠

,  (15b) 

and 

( ) ( )
2

2

4

, ( ) 4

1

I

mI

d
c

I I
xy I d

c

x x y y e
w d

c e

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

− −
= −

⎛ ⎞
⎜ ⎟− +
⎜ ⎟⎜ ⎟
⎝ ⎠

.  (15c) 

 

For the case when d is equal to zero (x = xI and y = yI 

), the second derivative of w(dI) is calculated as the 
limit of w,ij(dI) as d approaches zero and may be 
written as: 

2

2

2

, ( ) , ( ) 2

1

mI

mI

d
c

xx I yy I d
c

ew d w d

c e

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= = −
⎛ ⎞
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

,  (16a) 

and   
, ( ) 0xy Iw d = . (16b) 

 
The complete work of all these derivations can be 
found in the previous work by the same author [7]. 
 

PLOTS 
 
After deriving the MLS shape functions and the 
weight functions derivatives, a program code is 
written to verify the derivations of shape functions 
and its derivatives, using the derivatives of the 
exponential weight function. To compare the written 
code with previous published works [8], the geometry 
of the MLS shape function is plotted in Figure 2. 

 

Figure 2. The MLS Shape Function [7] 
 
It can be seen from the plot in Figure 2 that the 
shape function has the value of 1 at the considered 
point, and getting smaller as the distance gets 
further from the considered point. This verifies the 
property of the exponential weight function used. 
The shape function is continuous in geometry. 
 
The first derivatives of the shape functions in the x 
and y direction are plotted on Figures 3 and 4 below, 
respectively. 
 

 
Figure 3.  First Derivative of The MLS Shape Function in The 

X-Direction [7]   
 

 
Figure 4.  First Derivative of The MLS Shape Function in The 

Y-Direction [7] 
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Figures 3 and 4 show that the plot of the first 
derivative of the shape function in the x direction 
resembles the one of the first derivative in the y 
direction. The only difference is in the orientation of 
the function, as expected. Both Figures shows the 
continuous property of the first order shape function 
derivatives. 
 
Lastly, the second derivatives of the shape functions 
in the xx, yy, and xy direction are plotted on Figures 
5, 6, and 7 below, respectively. 
 

 
Figure 5. Second Derivative of The MLS Shape Function in 

The XX-Direction [7]    
 

 
Figure 6. Second Derivative of The MLS Shape Function in 

The YY-Direction [7] 
 

 
Figure 7. Second Derivative of The MLS Shape Function in 

The XY-Direction [7]  

Figures 5, 6, and 7 show that the plot of the first 
derivative in the xx direction resembles the one of in 
the yy direction. They only differ in the orientation of 
the function, as expected. All Figures shows the 
continuous property of the second order shape 
function derivatives. 
 
It is important to note that all figures matches 
visually with the ones shown in previous published 
works [8] in meshless methods. 

 
SUMMARY 

 
A derivation of MLS shape function and its 
derivatives using the exponential weight function 
has been presented, programmed, and verified. 
Further verifications of these derivations, by using 
the written program code as a subroutine in 
meshless methods, has been done in recent works 
([7], [9], [10]) with good results. All plots show the 
continuous property of the MLS shape function and 
its derivatives, which is very beneficial in calculating 
variables requiring higher degree of accuracy in 
shape function derivatives. It can be seen also that 
MLS approximation requires no definition of 
elements to be used, which makes it very suitable to 
be used in meshless methods. 
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