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ABSTRACT 
 
A practical algorithm for automated mesh design in finite element analysis is developed. A regional 
mixed mesh improvement procedure is introduced. The error control, algorithm implementation, 
code development, and the solution accuracy are discussed. Numerical example includes automated 
mesh designs for plane elastic media with singularities. The efficiency of the procedure is 
demonstrated. 
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INTRODUCTION 
 

Mesh generation and mesh improvement proce-
dures have drawn considerable research interest 
in finite element development. This in part is 
due to their critical importance in the impro-
vement of solution accuracy, particularly for 
stress analysis problems involving high stress 
and displacement gradients. For problems with 
stress singularities, such as concentrated 
applied loads, crack-rips and stress wave fronts, 
a finer mesh is usually required in a small 
region where stress concentration occurs [1]. 
 
 Among the different strategies used for 
adaptive improvement of the element meshes, 
the following four are mentioned: (a) redeve-
loping meshes, (b) moving the nodes, (c) 
changing the order of the interpolation function, 
and (d) a mixture of the three basic methods. In 
the first strategy, the DOF of each element are 
kept constant and an improved mesh is 
constructed by optimizing the elements into 
small elements. This is usually referred to as 
the “h-method”. In the second strategy, the 
quality of the finite element solutions is 
improved by optimizing the location of the 
nodes, while keeping the number of degrees of 
freedom fixed. This is usually referred to as the 
“r-method”. The third strategy is based on 
increasing of the order of the polynomials of the 
element formulation and it is usually referred to 
as the “p-method” [2, 3]. 
  
 
Note: Discussion is expected before December, 1st 2000. The 
proper discussion will be published in “Dimensi Teknik 
Sipil” volume 3 number 1 March 2001. 

Quite often, a single method is not efficient for 
engineering practice. It is then natural to consi-
der mixed approaches of refinement. Algorithms 
combining the “h- and p-methods” have been 
recently proposed, blending the two methods to 
provide a more flexible and computationally 
efficient procedure [4]. The performance was 
studied theoretically by Babuska and Dorr [5], 
Babuska and Rheinboldt [6], and Babuska and 
Rank [7]. The study also considered coupling 
mesh generations, cost estimates, error predic-
tors and mesh refinements.  
 
Las Casas [8] studied the combination of the r 
and h refinement method which was imple-
mented for two dimensional elasticity problems. 
An initial improvement was obtained for coarse 
mesh using the r version to reach a near-
uniform distribution of element error. A global 
refinement is then performed by equally sub-
dividing all elements in the domain. Numerical 
examples showed that the use of r-h techniques 
provided a variable approach to generate 
efficient grids. The data structure is simple and 
requires reasonable computational effort. 
However, Las Casas considered 4-node elements 
only. When the p-refinement is performed for an 
element, all the adjacent elements must also be 
divided accordingly to maintain the compati-
bility. Thus, too many redundant sub-divisions 
are required. Furthermore, elements with a 
large aspect ratio may also appear and lead to 
possible numerical difficulties. 
 
Further study in r-h refinement approach has 
been reported by Ning [9]. In this study, a 
collapsible isoparametric element was adopted. 
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The benefit of using the collapsible elements is 
that the choice of four nodes to nine nodes in an 
element gives a smooth and compatible transi-
tion from a coarse mesh to a more refined one 
within a region. Numerical examples for stress 
concentration problems showed that the method 
provided convenience and efficiency. 
 
In this study, attention is focused on the 
development of an adaptive mixed refinement 
algorithm by using collapsible isoparametric 
elements. Plane elements may be varied from 
four nodes to nine nodes. Furthermore, the 
global mesh can be subdivided into regions. 
Based on the accuracy criteria, each region can 
be refined differently. The use of collapsible 
elements ensures conformity between regions. 
An adaptive procedure can also be introduced to 
define the refinement zones. 
 
Implementation of the concept of regional 
refinement is described in this study. Error 
estimates, indicators for improvement mea-
sures, are presented.  Numerical examples are 
given to verify the concept and the algorithm. 

 
 
REGIONAL REFINEMENT 
 

In this section, the concept of regional 
refinement by using collapsible elements is 
presented. To illustrate the procedure, let the 
stress concentration region be small as 
compared to the entire plane elements. We may 
divide the mesh into several subregions as 
shown in Fig. 1. A uniform mesh may be 
adopted for the initial computation with r-
refinements performed for the entire plane 
elements based on an accuracy criterion. Then, 
coordinates of the elements in the region far 
away the singular point are assumed to be fixed. 
Further h or p-refinements in the subregions 
near the crack may be introduced. R- refine-
ments may then be performed for only part of 
the mesh. The procedure is repeated until the 
tolerance requirement is met.  
 
The use of collapsible elements introduces 
considerable flexibility in handling the interface 
regions. Fig. 2 shows an example. The initial 
mesh is constructed by 4-node elements in a 
simple rectangular interior grid. After a set 
number of r-improvements, refined regions are 
defined; one may choose to simply impose a p-
improvement using 9-node elements for the 
refined region and allowing the outside region 
remains unchanged. 
 

 
 

Figure 1. Regional Refinement for a Crack Problem 
 
 

 
Figure 2. Regional Refinement with Collapsible Element 

 
An automatic interface region is created by 5-
node elements. Further improvements may be 
imposed to the refined region only. For example, 
a set of r-cycles may be imposed to relocate the 
coordinates of the nine-node elements, while the 
interface and coarse regions remain fixed. To 
introduce an hp-refinement in the refined 
region, one may simply subdivide the refined 
region uniformly, as shown in Fig. 2(c). The 
interface region is also subdivided into a 
multiple of 5-node elements. Alternatively, one 
may let the interface region advance into the 
other types of isoparametric elements. Fig. 2(d) 
shows the use of pairs of 4-node and 5-node 
elements. Another possibility is the use of a 6-
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node and two 5-node elements in the interface 
region. Thus, the 4-node element to 9-node 
element may be used together in a complex 
mesh. 

 
 

ERROR ESTIMATES 
 
To implement the mixed refinement method, an 
important step is to evaluate the interpolation 
error in each element. Since exact solutions are 
not available, it is not possible to find the true 
error. Thus the refinement is based on an 
estimate of the interpolation error bound. A 
discussion of the error bound estimates can be 
found in Diaz [10]. The selection of Sobolev 
norm for 4-node isoparametric elements has 
been discussed by Las Casas [8] and for 
collapsible isoparametric elements by Ning [9]. 
 
Following Diaz [10], and Diaz, Kikuchi, Taylor 
[11], the discretization error bound has the form 

1k
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+

−+≤−=  (1) 

where: 
u  -  exact solution 
uh -  finite element solution 
k - order of finite element interpolation 

function 
m -  an integer, 0 ≤ m ≤ k 

u  -  the Sobolev semi-norm of u 

C -  a constant 
h -  diameter of the element 
 
The Sobolev semi-norm for the solution domain 
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Since the number of nodes and the edges with 
additional nodes are varied, the shape functions 
of a collapsible element are complicated. Table 1 
shows the shape functions for a linear-quadratic 
collapsible element. 
 
Error Bound in 4-Node Elements 
 
As shown in Table 1, the highest order term is 

the “rs” term. Since the shape functions do not 
contain the other quadratic terms, the highest 
power of the polynomial in Eq. (1), k, is equal to 
1. Taking m = 0, the error is bounded by 

2
2 uChe ≤  (3) 

In this inequality, second derivatives of the 
shape function are needed. However, the poly-
nomials for the shape function have only C1 
continuity. Thus, it is not possible to evaluate 
the Sobolev norm which requires second deri-
vatives.  

 
Several approaches have been proposed in the 
literature to find the approximate Sobolev norm. 
The approach suggested by Diaz [10] and tested 
by Las Casas [8] and Ning [9] is adopted in the 
present study. The first derivatives of displace-
ment are found at the assigned Gaussian points 
using a least square procedure to find the 
functional form of in  ∂u/∂x the global coordinate 
system. The equation is 

cbyax
x
u

++=
∂
∂

 (4) 

The second derivative ∂2u/∂x2 = a can then be 
calculated. Following the same technique, the 
other partial derivatives δ2u/δxδy, δ2u/δy2, 
δ2v/δx2, δ2v/δxδy, δ2v/δy2, can be calculated by 
finding the functional form of δu/δy, δv/δx, and 
δv/δy. 
 
Error Bound for 5 to 9-Node Elements 

 
The highest power of the shape function poly-
nomial for a 5 to 9-node isoparametric element 
is two. Hence, the error bounded by the 
inequality for k = 2 and m = 1 is  

3
2 uChe ≤  (5) 

which requires the evaluation of third order 
partial derivatives. Since the second derivatives 
can be directly calculated from the shape 
functions, the same approach discussed pre-
viously may be used to find the third deri-
vatives. Alternatively, we may fit the values of 
the first derivatives at Gaussian points to a 
quadratic function of x and y in the form  

feydxcybxyax
x
u 22 +++++=
∂
∂

 (6) 

 
The ∂3u/∂x3 is equal to 2a. We find that this 
approach seems to yield better results, since the 
first derivatives are a higher order of accuracy. 
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It is adopted in the present algorithm. 
 
Table 1. Shape Function for 4-9 Nodes 

Collapsible Isoparametric Element 
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INDICATORS FOR IMPROVEMENT 
MEASURES 

 
Several indicators for improvements have been 
introduced to control the process of mesh 
improvement. 
 
Potential Energy 
 
The equilibrium state of the exact solution can 
be thought to be in a state of minimum total 
potential energy due to the external loading. 
Thus, an improvement of the element mesh 
should lead to a decrease of the total potential 
energy. For plane stress problems, the total 
potential energy can be calculated by: 

( ) ( )∑∑ +−σε+σε+σε=Π
Ω

vfuf2
2
1

yxyyxyyyyyxxxx   (7) 

In the algorithm, the value of Π  is calculated 
after each nodal movement and each sub-
division of the mesh. If the value increases after 
the improvement, it indicates that the pro-
cedure yields a worse solution and the process 
should be terminated. 
 
Relative Error 

 
A relative error measure is used to control r-
refinements. Since the constant C in Eq. 1 is 
unknown, the true error can not be evaluated. 
However, we may compare the error bound of all 
elements. A parameter Errel to evaluate the 
relative error is defined as: 

( )
( )Ω

Ω=
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ErrorBoundMax

Errel  (8) 

The criterion for the r-refinement is that the 
relative error should converge to 1. The criterion 
for nodal movement is to move the nodes to the 
higher error bound region. The new nodal 
positions are found by a relation, which is based 
on the direct mean value of relaxation: 
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where β is an adjustable factor. After some 
numerical experiments, β is taken as 1.0 for the 
interior points and 0.5 for the boundary nodes. 
Convergence seems to improve if the boundary 
nodes movements is slowing down. M is the 
total number of elements connecting to the 
specific nodes. 
 
Element Aspect Ratio 

 
The element aspect ratio has a significant effect 
on the accuracy of the finite element solution. 
This parameter can be set for the r and h 
improvements to avoid severe element distorti-
on. A ratio of 1/3 appears to be a good ratio. 
 
Element Area Ratio 

 
Due to the use of Gauss Siedel iteration, which 
is adopted to solve the simultaneous equations, 
the algorithm converges slowly or may fail to 
converge when the stiffness matrix contains 
large and small terms at the same time. To 
avoid this problem, an element area ratio must 



P. Suprobo, et. al / Refinement For Finite Element Mesh Design Using Collapsible Element, Vol. 2, No. 2, September 2000, Hal. 
83 - 91 

 
 

87 

be set to terminate the h-refinement or to 
control the nodal movement in the r-improve-
ment. 

THE CODE DEVELOPMENT 
 

The code development is based on a program 
MOVIDA-C, implemented earlier by Las Casas 
[8] and improved by Ning [9]. In the program a 
Gauss-Siedel iteration method is used to solve 
simultaneous equations.  The advantages of this 
method are the stiffness matrix storage is small, 
and the matrix sorting work is reduced. To deal 
with problems involving strong singularities, 
such as crack problems, some modifications 
have to be made. Due to the strong singularity, 
the Gauss Siedel method requires a large 
number of iterations before reaching conver-
gence [12].  
 

 
Figure 3. Flowchart of the Computer Code 

 
This inefficiency is particularly noticeable after 
each h-refinement. To improve the rate of 
convergence, displacement values obtained for 
the previous mesh are used for the subsequent 
iteration. For the newly added nodes, inter-
polation values based on previous solutions are 
adopted This modification reduces the required 
number of iterations considerably. A flowchart 
of the computer code is given in Fig. 3. 

 
 

 
 
NUMERICAL EXAMPLE: PLATE WITH 

AN ELLIPTIC HOLE 
 

A square plate with an elliptic hole in the center 
is considered. The plate is 1 in (25.4 mm) thick 
and is made of a material with a Young's 
modulus of 3 × 107 psi (2.068 × 105 MPa) and a 
Poisson's ratio of 0.3. The distributed load, P, is 
1000 lbs./in (1.751 × 10-1 N/mm). The analytical 
solution for an elliptic hole assumes an infinite 
plate which ignores the plate size effect. For the 
specified configuration shown in Fig. 4, σxx along 
the Y-axis has the form: 

( ) ( )
( )ξ

ξ−ξ
σ=σ

sinh
sinh2cosh3

0xx  (10) 

where σ0 is stress at infinity and y = 14.14 
cosh(2ξ). ξ is an elliptic coordinate with 0.34 ≤ ξ 
≤ 2.644 for the present case. The maximum 
stress concentration occurs at top of the elliptic 
hole where σxx is equal to 7 σ0. To illustrate the 
mesh improvement process, an initial mesh with 
16 elements and 25 nodes is proposed, shown in 
Fig. 5(a). The first consideration is to improve 
the mesh by imposing 50r-refinements. The 
values of the potential energy and the relative 
error for the first ten, 20th and 50th steps are 
listed in the Table 2. 
 
It is seen that both the relative error and the 
potential energy decrease slowly and both 
values almost become constant. Thus, it is logi-
cal to terminate further r-refinement after the 
3rd iteration.  Fig. 5(b) shows the finite element 
mesh after 3r-refinements. The next step of 
improvement is to impose a regional p-refine-
ment near the hole. Elements 3, 4, 7, 8, 11, 12, 
15 and 16 remain the same, and elements 1, 2, 
5, 6, 9, 10, 13 and 14 are improved to 9-node 
elements (Fig. 5c). The total number of nodes 
becomes 55 nodes. The relative error after p-
refinement becomes high; however, the potential 
energy decreases rapidly. To reduce the relative 
error, r-refinement is introduced again. Table 3 
shown the improvement criterion values for the 
r-iterations. The potential energy reaches a con-
stant value after the first iteration. Moreover, 
the minimum value of the relative error occurs 
in the first iteration also. After that, the relative 
error increases. Therefore, the r-refinement is 
only required once. Fig. 5(c) (16 elements and 
55, nodes) shows the mesh improvement after 
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3r-p-lr. 
 

 
Figure 4. Square Plane, 200 × 200 in2 (5080 × 5080 mm2) 

with an Elliptic Hole, 30 in (762 mm) - 10 in (254 
mm) 

 
Table 2. Relative Error and Potential Ener-

gy for Plate with an Elliptic Hole 
(50 refinement) 

Potential Energy Step Relative Error lb-in Nmm 
Init, Mesh 82.38719 -0.17200E+03 -0.194324E+05 

1r 28.30731 -0.17210E+03 -0.194437E+05 
2r 28.37613 -0.17223E+03 -0.194584E+05 
3r 27.13404 -0.17221E+03 -0.194561E+05 
4r 30.10692 -0.17227E+03 -0.194629E+05 
5r 27.85783 -0.17222E+03 -0.194573E+05 
6r 31.75316 -0.17230E=03 -0.194663E+05 
7r 29.67274 -0.17226E+03 -0.194618E+05 
8r 32.73042 -0.17234E+03 -0.194708E+05 
9r 31.22723 -0.17230E+03 -0.194663E+05 
10r 32.59776 -0.17237E+03 -0.194742E+05 
20r 10.72613 -0.17255E+03 -0.194946E+05 
50r 6.56543 -0.17247E+03 -0.194855E+05 

 
For the next mesh improvement, we only 
consider the elements in a smaller refinement 
region. In this step, a mixed of h and p 
refinements is applied. Elements 1, 5, 9 and 13 
are then changed into four 9-node elements. 
Elements 2, 6, 10 and 14 become transition 
elements and are a combination of 5-node and 6 
node isoparametric elements. r-improvement 
cycles are again implemented for the small 
refinement region and values of the indicators 
are evaluated. The total potential energy does 
not increase much after the first of r-refinement. 
Hence if an increasing total potential energy is 
adopted as a criterion to terminate further 
improvements, 3r-p-1r-hp-1r will yield the final 
mesh for the problem. The final mesh gives σxx at 

(0,15) = 6.577 σ0 The closed form solution for an 
infinite plate is 7.0 σ0. The improved mesh after 

3r-p-1r-hp-1r step and the stress distribution 
results are shown in Fig. 5(d) and Fig. 6, 
respectively. The final mesh has 36 elements 
and 113 nodes. 
 

Table 3. Relative Error and Potential Ener-
gy for Plate with an Elliptic Hole 
(3r-p-1r-hp-5r refinement) 

Potential Energy 
Step 

No’s of 
Elem./ 
Nodes 

Relative 
Error lb-in Nmm 

Init. Mesh 16/25 82.38719 -0.17200E+03 -0.194324E+05 
3r 16/25 27.13404 -0.17217E+03 -0.194516E+05 
3r-p 16/55 35.87261 -0.17207E+03 -0.194403E+05 
3r-p-1r 16/55 4.88571 -0.17337E+03 -0.195872E+05 
3r-p-2r 16/55 6.55262 -0.17337E+03 -0.195872E+05 
3r-p-3r 16/55 5.42558 -0.17337E+03 -0.195872E+05 
3r-p-4r 16/55 8.07788 -0.17337E+03 -0.195872E+05 
3r-p-5r 16/55 6.37224 -0.17337E+03 -0.195872E+05 
3r-p-1r-hp 36/133 11.84905 -0.17370E+03 -0.196245E+05 
3r-p-1r-hp-1r 36/133 8.89900 -0.173370E+03 -0.195872E+05 
3r-p-1r-hp-2r 36/133 10.93108 -0.173370E+03 -0.195872E+05 
3r-p-1r-hp-3r 36/133 9.58200 -0.173370E+03 -0.195872E+05 
3r-p-1r-hp-4r 36/133 13.37915 -0.173370E+03 -0.195872E+05 
3r-p-1r-hp-5r 36/133 13.120073 -0.173370E+03 -0.195872E+05 
 

 

 
 

Figure 5. Improved Meshes 
 
Another possibility is to use a combination of 4-
node and 5-node isoparametric elements in the 
interface region. This may give another advan-
tage in the finite element code development 
because there are only three types of isopara-
metric elements used: 4, 5, and 9 node iso-
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parametric elements. After a similar 3r-p-1r-hp-
1r improvement step, the finite element mesh 
has 40 elements and 113 nodes, shown in Fig. 7. 
With the same number of degrees of freedom in 
the final mesh, the stress concentration factor 
obtained is 6.596. The stress distributions 
during the improvement steps are shown in Fig. 
9. The results are nearly identical to those 
previously obtained. 
 
 

 
Figure 6. σxx/σ0 Along the Y-axis (36 Elements, 113 

Nodes), 1 in = 25.4 mm 
 
 

 
Figure 7. Improved Mesh (40 Elements, 113 Nodes, 3r-p-

1r-hp-1r Trajectory) 
 
To examine the efficiency and effectiveness of 
the regional refinement, other mixed improve-
ment methods are applied to solve the same 
problem First the problem is solved by a semi-
global rph-mixed refinement. A global p-
refinement is used for improving the mesh with 
all elements changed to 9-node elements after 
3r-refinement. Then, a regional refinement is 
introduced to the elements near the stress 
concentration. Elements 1, 5, 9 and 13 are 
improved to four 9-node elements and elements 
2, 6, 10 and 14 are used as transition elements. 

Each of these transition elements contain two 9-
node elements and one 6-node element. The 
final improved mesh is shown in Fig. 8, which 
has 36 elements and 139 nodes. The stress 
distribution along the Y-axis is shown in Fig. 10, 
which gives a maximum stress ratio 6.613. The 
stress concentration factor of the global and 
regional refinements is improved only 0.55% yet 
require 20% more computational time. 

 

 
Figure 8. Improved Mesh in Semi-Global Refinement (36 

Elements, 139 Nodes, 3r-p-1r-hp-1r Trajectory)  
 
 

 
Figure 9. σxx/σ0  Along the Y-axis (40 Elements, 113 

Nodes), 1 in = 25.4 mm 
 
Completely global h and p-refinements are also 
considered. Meshes for the global p-hp and p-hp-
hp trajectories are shown in Fig. 11 and Fig. 12, 
respectively. Both improved meshes yield rather 
poor results. The compared results and executi-
on times for all the improvement cases are listed 
in Table 4. 
 
It is shown that the regional refinements give 
better solutions than the global refinements. 
Figures 13 and 14 show the stress distribution 
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and the improvement stress concentration 
value. In the process of the mesh improvements, 
the regional refinement consistently yields 
better solutions. Furthermore, in terms of the 
total number of degrees of freedom required, the 
advantage of the regional refinement is more 
evident as seen in Fig. 14. Compared to the 
analytical solution, the mesh based on the global 
p-hp-hp procedure yields a 29% difference; 
otherwise, the regional refinement gives 6% 
difference. 
 

 
Figure 10. σxx/σ0  Along the Y-axis (36 Elements, 136 

Nodes), 1 in = 25.4 mm 
 

 
Figure 11. Improved Mesh in Global Refinement (64 

Elements, 289 Nodes, p-hp Trajectory) 
 

 
Figure 12. Improved Mesh in Global Refinement (258 

Elements, 1089 Nodes, p-hp-hp Trajectory) 
Table 4. Results and execution time for plate 

with an elliptic hole 

Potential Energy 
Step 

No’s of 
Elem./ 
Nodes lb-in Nmm 

σxx/σ0 at 

(0,15) 
CPU 
time  

(second) 
3r-p-1r-hp-1r 36/113 -0.17373E+03 -0.196279E+05 6.577 22.00 
3r-p-1r-hp-1r 40/113 -0.17389E+03 -0.196460E+05 6.596 23.38 
3r-p-1r-hp-1r 36/139 -0.17380E+03 -0.196358E+05 6.613 26.57 

p 16/81 -0.17317E+03 -0.195646E+05 2.982 6.75 
p-hp 64/289 -0.17347E+03 -0.195646E+05 4.068 39.68 

p-hp-hp 256/1089 -0.17365E+03 -0.196188E+05 4.959 476.83 
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Figure 13. Comparison of  σxx/σ0  Along the Y-axis for 

Regional and Global Improvement Cycles, 1 
in = 25.4 mm 

 

 
Figure 14. Comparison of Maximum  σxx/σ0   in Terms of 

DOF Used in the Regional and Global Refine-
ments 
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