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Catatan Redaksi: 

 
Makalah ini adalah seri kedua dari dua yang membahas Meshless Numerical Analysis Method, 
suatu metode analisa numerik yang berkembang dengan pesat sebagai alternatif metode elemen 
hingga (Finite Element Method). Makalah seri pertama yang mengenalkan Moving Least-Squares 
Approximation telah dimuat dalam Dimensi Teknik Sipil, Vol 4., No. 1, Maret 2002. 
 
 

INTRODUCTION 
 

In recent years, meshless methods have been 
developed as alternative numerical approaches 
in efforts to eliminate known drawbacks of the 
Finite Element Method (FEM). The main 
objective in developing meshless methods was to 
eliminate, or at least reduce, the difficulty of 
meshing and remeshing of complex structural 
elements. The nature of  various approximation 
functions employed by meshless methods allows 
the definition of problem domains by simply 
adding or deleting nodes where desired. Nodal 
connectivity to form an element as in FEM 
method is not needed, only nodal coordinates 
and their domain of influence (DOI) are 
necessary to descretize the problem domain. 
Meshless methods may also reduce other 
problems associated with the FEM, such as 
solution degradation due to locking and severe 
element distortion [1]. 

There are several meshless methods under 
current development, including the Element-
Free Galerkin (EFG) method proposed by 
Belytschko et al. [2], the Reproducing Kernel 
Particle Method (RKPM) proposed by Liu et al. 
[3], Smooth Particle Hydrodynamics (SPH) 
method proposed by Gingold and Monaghan [4]. 
The major difference in these meshless methods 
is in the choice of interpolation techniques they 
use. The above meshless method are meshless 
only from the point of view of the interpolation 
of  the  field  variables, as compared to the FEM. 
  

Note: Discussion is expected before November, 1st 2002. The 
proper discussion will be published in “Dimensi Teknik 
Sipil” volume 5 number 1 Maret 2003. 

These meshless methods still use background 
cells to integrate the global Galerkin weak form.  

Recently, another meshles method called 
Meshless Local Petrov-Galerkin (MLPG) has 
been developed [1]. This method is believed to 
have a good future due to its generality in 
chosing the form of test and trial functions and 
also that it is similar to the well established 
EFG method. Atluri et al. [1] proposed a new 
integration method in a local domain, based on a 
Local Symmetric Weak Form (LSWF). 
Therefore, the MLPG method is a truly 
meshless method, and all other meshles 
methods can be derived from it, as special cases, 
if trial and test functions and the integration 
method are chosen appropriately 
  
 

MESHLESS LOCAL PETROV-
GALERKIN (MLPG) METHOD 

 
For a two-dimensional linear, elastic boundary 
value problem in a global domain Ω , bounded 
by Γ (Fig. 1), the force equilibrium equation can 
be written as: 

Ω=+ inbijij 0,σ  (1)  

where σij is the stress tensor, bi are the body 
forces, and σij,j indicates the partial derivative of 
σij with respect to coordinate direction xj. 
Additionally, the boundary conditions may be 
written, respectively, as: 

uii atuu Γ=  (2) 

tijij attn Γ=σ  (3) 
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where iu  is ith component of displacement, iu  

and it  are prescribed displacements and 

tractions that are applied on boundary segments 

uΓ  and tΓ , respectively, and jn  is the unit 

vector that is locally outward normal to the 
boundary. A generalized local weak form of the 
governing differential equation and the 
boundary conditions, over a local sub-domain 

Ω∈Ω I
te , as shown in Figure 1, can be written 

as [1]: 

( ) ( )∫ ∫
Ω Γ

=Γ−−Ω+
I
te

I
su

dvuudvb iiiiijij 0, ασ   (4) 

where I
suΓ  is the intersection of uΓ  and the 

boundary I
teΩ∂  of  I

teΩ , iv  is a test function 

that can be chosen with some degree of 
flexibility, and α  is a penalty parameter that 
sets the degree of influence of the second term in 
(4) with respect to the first term. The definitions 
of the various regions and boundaries relevant 
to the formulation of the MLPG method are 
clearly illustrated in Figure 2.  
 

Figure 1.  A schematic representation of the sub-domain 
I
teΩ , with node I as its center and with 

boundary I
teΩ∂ . The global domain is Ω  with 

a global boundary Γ ,  where displacement are 
prescribed on 

uΓ  and tractions are prescribed 
on tΓ . 

 
Further, if integration by parts and the 
divergence theorem are applied to the first term 
of Equation 4, the equation can be expressed as 
follows: 

∫

∫∫∫

=−

−+−
∂

I
su

I
te

I
te

I
te

Γ
iii

Ω
ii

Ω
ji,ij

Ω
ijij

0dΓ)vu(uα

dΩvbdΩvσdΓvnσ

 (5) 

 

Figure. 2. Important definitions if the domain of the test 
function I

teΩ intersects the global boundary 
Γ . The intersection of I

teΩ  and uΓ  is defined 
as 

suΓ , while its intersection with 
tΓ  is defined 

as stΓ . 
 
Noting that test function vi = 0 on I

teΩ∂ except if 
I
teΩ∂  intersects a global boundary Γ,  Equation 5 

can be rewritten as: 

∫

∫∫∫∫

=−

−+−+

I
su

I
te

I
te

I
st

I
su

Γ
iii

Ω
ii

Ω
ji,ij

Γ
ijij

Γ
ijij

0dΓ)vu(uα

dΩvbdΩvσdΓvnσdΓvnσ
 (6) 

 
Finally, Equation 6 can be re-written in the 
following form (known as the local symmetric 
weak form): 

∫∫

∫∫∫ ∫

+

+=−+

I
te

I
su

I
st

I
su

I
te

I
su

Ω
ii

Γ
ii

Γ
ii

Γ
ii

Ω Γ
iiji,ij

dΩvbdΓvuα

dΓvtdΓvtdΓvuαdΩvσ
 (7) 

where I
stΓ  is the intersection of tΓ  and the 

boundary I
teΩ∂ , and jiji nt σ= . Equation 7 leads 

to the Ith row of the global stiffness matrix. The 
Jth columns of the stiffness matrix correspond to 
all nodes whose domains of influence J

trΩ  
intersect with the Ith test function’s sub-domain 

I
teΩ , as shown in Figure 3. 

 
Further, it can be shown if the radius of J

trΩ  and 
I
teΩ  for each I and J are equal, and if ui and vi 

centered at the Ith and Jth nodes, respectively, 
are the same for each I and J, then the stiffness 
matrix will be symmetric. In this study, the test 
function vi is equal to zero at I

teΩ∂  except if 
I
teΩ∂  intersects the global boundary Γ, and the 

test function vi is any function that is 
sufficiently well-behaved and integrable [5]. 
This means that the test function can take any 
shapes such as circular, ellipse, rectangular, 
polygonal, etc., as long as the above criterions 
are met. 

 

uΓ
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To obtain the discrete equations from the MLPG 
formulation (7), the trial function ui and test 
function vi are defined as follows: 

∑
=

=
N

J

J
i

J
i uxxu

1

ˆ)()( φ , and (8a) 

∑
=

=
N

I

I
i

I
i vxxv

1

ˆ)()( ψ  (8b) 

where φJ(x) and ψI(x) are the nodal shape 
functions for the trial and test functions, 
respectively, and are centered at nodes J and I, 
respectively. The φJ(x) are constructed from 
Moving Least-Square (MLS) approximation 
functions and the ψI(x) are chosen as the weight 
functions used in MLS approximation at node I. 
Thus each nodal sub-domain is circular in 
shape. Typically, trial functions decrease 
smoothly to zero at the support boundaries, 
forming a bell-like shape in 2D domains (see 

Figure 3). In typical meshless interpolations, J
iû  

are referred to fictitious nodal values since they 
have no real physical meaning. Due to the 
nature of MLS approximation functions, which 
are not necessarily equal to unity at its 
corresponding node and equal to zero at their 
neighboring nodes, the nodal degrees of freedom 
in MLS based methods do not correspond to 
actual displacements at the nodes. 
 

Substituting Equation 8 into Equation 7 and 
factoring I

iv̂  (because it appears in each term of 

Equation 6, and also since it can be chosen 
arbitrarily) out of the equation, the discrete 
form of the MLPG formulation can be expressed 
as follows: 

( )
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 (9) 

where in two-dimensional space, 
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Further, Equation 7 can be written in a more 
compact form which we may already be familiar 
with, namely: 

I

N

J

J
IJ fuK =∑

=1

ˆ  (10) 

Trial function of 
nodes J1, J2, J3, J4

Test function of node I and 
trial function of node J5 (=I) 

Figure 3.  Intersections of test function and trial functions which leads to non-zero components in the Ith row of
stiffness matrix. In the above figure, the Ith row of the stiffness matrix will have 10 non-zero components
in a 2D elastostatic analysis. 



P. Pudjisuryadi / Introduction To Meshless Local Petrov-Galerkin Method / DTS, Vol. 4, No. 2, 94 - 99, September 2002 

 115

where 

( )

∫ ∫∫

∫∫∫

Γ ΩΓ

ΓΓΩ

Ω+Γ+Γ=

Γ−Γ+Ω=

I
su

I
te

I
st

I
su

I
su

I
te

v

bdVduVdtVf

dNDBVdVdDBBK

III
I

JIJIJTI
IJ

α

φα
. (11) 

In the MLPG method, the usual assembly 
process, mapping non-zero components of local 
stiffness matrices into the global stiffness 
matrix based on the equation number of each 
degree of freedom, is not required to form the 
global stiffness matrix. In the MLPG method 
each local weak form (examining only one test 
function and the trial functions whose domains 
intersect with its domain) results in two rows 
(for two dimensional problems) of non-zero 
components of the global stiffness matrix. 
Theoretically, as long as the union of all local 

sub-domains I
teΩ  covers the global domain, the 

equilibrium equation and the boundary 
conditions will be satisfied in the entire global 
domain Ω  and along its boundary Γ  [1]. 
Solving Equation 10, the fictitious nodal 

displacement values Jû  at every node J can be 
obtained. Approximate solution can be obtained 
from Equation 8a, and by taking the derivative 
of this approximate solution and applying an 
appropriate stress-strain relationship (the 
Hooke’s Law), the strain and the stress can be 
obtained. 
 
 

NUMERICAL EXAMPLES 
 
Numerical examples are presented in this 
section to verify the method. A cantilever beam 
subjected concentrated load on its free end 
(Figure 4) will be analyzed with MLPG method 
using  linear and quadratic basis functions in 
forming the MLS approximation and Gaussian 
Weight function [1]  with circular domain as the 
test functions [6]. Uniform nodal distributions 
are used in this examples (6x4, 11x7 and 21x13). 
Domain of influence for trial function and radius 
of circular domain for test function of each node 
are chosen to be 3 times the nodal spacing. 
L2Norm of displacement error ue  and relative 

L2Norm of displacement error uerel −  (after 

normalized with L2Norm of exact displacement)  
over the entire problem domain are presented in 
Table 1. These two error measure are computed 
as followings : 

 

Ω−+−= ∫
Ω

dvvuue exappexapp
u })(){( 22  (12) 

∫
Ω

Ω+
=−

dvu

e
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exex

u
u

)( 22
 (13) 

 
 

Figure 4. The Cantilever Beam Test 
 

The analytical solution for the cantilever beam 
problem is given by Timoshenko [7] in this 
equation : 
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 (14) 

It can be seen from Table 1 that using more 
nodes to descretize the problem domain and 
increasing the basis function order used for 
constructing MLS approximation, improve the 
results. 
 
Table 1. Results of cantilever beam test using 

DOI and radius of circular subdomain 
equal to 3 times of the uniform nodal 
spacing. 

Basis Function Linear  Quadratic  
 
Nodal 
Distribution 

ue  uerel −

% 

ue  uerel −

% 
6x4     (1.00 unit spacing) 3.63x10-2 7.80 1.71x10-2 3.68 
11x7   (0.50 unit spacing) 1.17x10-2 2.50 2.64x10-3 0.57 
21x13 (0.25 unit spacing) 2.73x10-3 0.59 7.15x10-4 0.15 
 
 

SUMMARY 
 
Some important features in MLPG are 
emphasized in this section. In MLPG method, 
data needed for problem descretization are 
nodal coordinates and their corresponding 
domain of influence. No nodal connectivity to 
form elements is necessary. In general, test 
functions and trial functions used in MLPG can 
be different which can lead to unsymmetrical 
stiffness matrix. Due to the nature of Moving 

3=D

5=L

10=P

x

y
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Least-Square shape function used in MLPG, 
that the value at corresponding node is not 
equal to 1 unit and zero at all other nodes, the 
degrees of freedom solved by MLPG formulation 
are not the real nodal values, they are fictitious. 
Real nodal values (and also other values at any 
locations in the problem domain) can be 
obtained by employing the MLS approximation 

with already known fictitious nodal values Jû . 
It is believed that the accuracy of solution by 
MLPG method which employs smooth 
approximation (MLS) is good. 
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