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Abstract: Incomplete (missing) of streamflow data often occurs. This can be caused by a not 
continous data recording or poor storage. In this study, missing consecutive streamflow data are 
predicted using the principle of information entropy. Predictions are performed using the 
complete monthly streamflow information from the nearby river. Data on average monthly 
streamflow used as a simulation sample are taken from observation stations Katulampa, 
Batubeulah, and Genteng, which are the Ciliwung Cisadane river areas upstream. The 
simulated prediction of missing streamflow data in 2002 and 2003 at Katulampa Station are 
based on information from Genteng Station, and Batubeulah Station. The mean absolute error 
(MAE) average obtained was 0,20 and 0,21 in 2002 and the MAE average in 2003 was 0,12 and 
0,16. Based on the value of the error and pattern of filled gaps, this method has the potential to 
be developed further. 
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Introduction   
 
Water resources planners and managers use histo-
rical monthly average streamflows data for a variety 
of purposes. The data set are often not complete, 

missing streamflows data may exist due to various 
reasons such as not continuous data recording or lost 
in storage. In relation to the development of analysis 
techniques, there should be a better method so that 

the uncertainty concerning with frequency of field 
experience could be minimized, to be accurate in 

predicting calculation. 

 
The purpose of this paper is to develop and to test a 
method to fill monthly average missing streamflows 
data. Predictions to fill the missing streamflows data 

use existing data and information data from the 
nearest river basins that have a complete data 
recording history and proximity hydrological. Infor-
mation from a nearby river basin is required, 

because the hydrologic pattern of adjacent river 
basin have similarities. This information will be 
utilized to fill the missing streamflow data in a river 
basin.  
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The approach used to predict a missing streamflows 

data is the principle of information entropy, which 

is based on the probability of distribution of each 

river flow events within a region [1].  

 

Unavailability of data has led the theory of entropy 

to be attractive and widely used in models of decision 

making in environmental and water resources [1]. 

Kusmulyono and Goulter [2] used of the principles of 

entropy as a method of analysis, that is based on the 

interpretation of entropy principle and characteris-

tics, that can be used to analyze events that have a 

probability. 

 

The entropy theory comprises three main parts: 

Shannon entropy, principle of maximum entropy, 

and principle of minimum entropy. The entropy 

theory has been applied to a great variety of 

problems in hydrology and water resources. Singh 

and  Rajagopal [3] discussed advances in application 

of the principle of maximum entropy (POME) in 

hydrology. Singh and Rajagopal [3] presented new 

perspectives for potential applications of entropy in 

water resources research. The entropy principle has 

recently found areas of versatile and promising use 

in hydrology and water resources [1]. Specific area of 

its application covers assessment of model perfor-

mance, derivation of functional relationship, evalua-

tion of information transfer between hydrology 

variables data, parameter estimation, derivation of 

frequency distribution, streamflow prediction, assess-

ment of uncertainty, and evaluation of data acquisi-

tion system [3]. The method is subsequently exten-

ded for purposes of spatial design in case of 

steamflow gaging stations by defining transferred 

and transferable amounts of information [4]. 
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Entropy method has been developed to estimate the 
random variable when the data are series of inde-
pendent observations of the variable. This method is 
interesting, because it meets two basic requirements 
used to analyze probability based on the principle of 
invariant systems and the principle of monotonous 
data. Minimum entropy method has been applied to 
the analysis of the flood, and then compared with the 
method of moments and maximum likehood [5]. The 
entropy theory is used to develop a univariate model 
for forecasting of long term streamflow [6]. The 
maximum entropy method is also widely applied and 
the maximum entropy distribution proved suitable 
for a variety of flooding data [7]. An entropy-based 
approach has been developed for estimation of 
natural recharge in Kodaganar River basin, Tamil 
Nadu, Southern India [8]. 
 

The frequency distribution is usually assumed in the 
analysis of frequency. The parameters of the 
distribution are estimated using the observed data 
changes. Completeness of the distribution is then 
used to estimate the amount of flow with different 
frequencies. Maximum entropy is a probability dis-
tribution which is defined as the minimum conditio-
nal probability distribution obtained by maximizing 
the entropy subject to constraints of the information 
given limits [7]. Apart from the interesting features 
of the distribution of maximum entropy, yet com-
monly used in practice, the main reason for not using 
the maximum entropy distribution in the general 
form is that the parameter estimation problem 
associated with the maximum entropy distribution is 
not easy. Recently this problem has been solved and 
the algorithms have been developed to estimate the 
parameters of the distribution of maximum entropy 
[7]. 
 

Study Area and Data 
 

This research studies area are Ciliwung and Cisa-
dane rivers with observational data obtained from 
the Department of Water Resources, Bandung, Indo-
nesia. The data used in this study are drawn from 
the monthly average streamflows from observation 
stations Katulampa, Batubeulah and Genteng, at 
the Ciliwung and Cisadane river upstream. The mon-
thly average flow profiles of the three observation 
stations can be seen in Figure 1.  
 

 
 

Figure 1. Monthly Average Streamflows Data from 

Batubeulah, Katulampa, and Genteng Stations.  

Method  
 
Second Law of Thermodynamics states that under 
normal conditions, all systems without disruption 

tend to be disorganized, dispersed, and corrupted 
over time. Second law of thermodynamics is a way of 
defining this natural process with physics equations 
and calculations. This law is also known as entropy 

[1]. Shannon [9] developed the entropy theory for 
expression of information or uncertainty. To under-
stand the informational aspect of entropy, we 
consider a set consisting of n events. We view 

uncertainty as a situation where we do not know 
which event among n events will occur. Thus, 
uncertainty is about which one of those events 
actually occurs. 

 

Entropy is the interval of disorder in a system. It 

increases when a regular, structured, and planned 

state system becomes more irregular, scattered, and 

unplanned. Law of entropy states that the whole 

universe moves towards a more disordered, unplan-

ned, and disorganized. Shannon [9] illustrates that 

the entropy is the amount of uncertainty in proba-

bility distributions. Thus, the concept of entropy can 

be used as a measure of uncertainty and indirectly 

as a measure of the probabilistic information. 

According to Shannon [9], this information is 

achieved only when there is uncertainty about an 

event. This uncertainty can be assumed to indicate 

the presence of alternative outcomes of events and to 

select them. Alternative with a high probability of 

occurrence showed little information available and 

its opposite. Thus, the likelihood of occurrence of a 

particular alternative is a measure of uncertainty, in 

this case Shannon called the entropy. 

 

Information is a measure of uncertainty or entropy 

in a situation. The greater the uncertainty, the gre-

ater the available information. If there is a circum-

stance, there is no information at all. Theory of 

information entropy is a formula in use and at follow 

as the basis of measurement. The probability of n 

possible events 1, 2, 3, ..., n is p1, p2, ..., pn, and uncer-

tainties may be defined as H (p1, p2, p3, .., pn) [10]. The 

basic equation of entropy is shown in Equation 1. 





n

1i

ii p lnpKH   (1)        

 

Where H is a measure of information or the size of 

the uncertainty, the probability pi that may be on 

events i. H will have a maximum value (ln n) if all 

the events is uncertain and pi = 1/n. H will have a 

minimum value (0) if all the events for sure. In the 

probability of random occurrence the value of H will 

be between the two extremes. The maximum mean 

value of H indicates that there is no bias in 

predicting. 
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Principle of Maximum Entropy (POME) 
 

Since the development of the entropy theory by 

Shannon in the late 1940s and of the principle of 

maximum entropy (POME) by Jaynes [11] in the 

late 1950s there has been a proliferation of applica-

tions of entropy in a wide spectrum of areas, include-

ing hydrological and environmental sciences. Maxi-

mum entropy is also called the Principle of 

Maximum Entropy (POME). Characteristics of the 

maximum entropy function in Equation 2 are 

uniform probability distribution that will produce 

the maximum entropy value for the occurrence of the 

specified limits. Conversely the maximum entropy 

function Equation 3 has a limitation that the 

number of probabilities of all events must be equal to 

one, to ensure the probability distribution is the 

probability uniformly on every event. The principle 

of entropy can be used to obtain the probability 

distribution by maximizing the objective function by 

setting limits for specific information events. 

Maximum 



n

1i

ii PlnPH   (2) 

where 



n

1i

i 1P                           (3) 





n

1i

ii xxp                   (4)                  

 

Principle of Minimum Entropy (MDI) 

 

Minimum entropy is also called the Minimum 

Discrimination Information (MDI). The minimum 

entropy principle was first introduced by Kullback 

and Leibler [10], the measurement approach per-

formed with two probability distributions, namely 

the information to determine the difference between 

probability distributions P and Q. Equation present-

ed by Kullback and Leibler [10] to measure the 

entropy value is as in Equation 5 as the following: 





N

1i i
q

i
p

ln
i

PQ):H(PMinimum               (5) 

 

Where pi is the probability of event i of the 

probability distribution P and qi probability of event i 

of the probability distribution of Q 

 

Predicting Method  

 

Prediction of missing streamflows data on the obser-
ved location are performed using the principles of 
information entropy of the maximum and minimum 
entropy. Between maximum entropy and entropy 
will have a minimum value of entropy with the same 
probability distribution for events distributed uni-
formly. For example in the case of throwing the dice. 

Real probability of throwing the dice is pi, whereas qi 
is the theoretical probability which is 1/6. Optimiza-
tion of the maximum entropy (Equation 2) will yield 
an equal value to the optimization of minimum 
entropy (Equation 5) with the information value of qi 
= 1/6. Figure 2 and Figure 3 are probability distri-
bution results obtained from optimization of the 
maximum and minimum entropy with the con-
straint (Equation 3) and the average value (Equation 
4) of 3.5 and 4.5 respectively, while Figure 4 is ob-
tained by adding the standard limits deviation of 
1,898 in order to get a normal probability distribu-
tion. 
 

The minimum entropy principle with the example of 
throwing dice can be applied in the selection of 
probability distributions for hydrological parameters, 
especially on the observation history of discharge 
data on the location of the observation of a river to 
provide information on other locations. The principle 
of maximum entropy distribution factor allows to 
incorporate probabilities qi, which is the initial infor-
mation or (prior probability), to improve the final 
probability distribution pi (posterior probability) as a 
basis prediction. 
 
Figures 5 and 6 are illustrations of three adjacent 
river basins, where river basin data B has a vacancy 
that occurs in a certain time, while A and C is a river 
basin with complete data. Predicted loss of data in B 
can be done with the help of information from the 
river basin data A and C with the same period 
events, with consideration of the similarity of the 
flow pattern because of the proximity factor hydro-
logy and climatology. 
 

 

Figure 2. Throwing Dice Probability Distribution with an 
Average Set of Incidence = 3.5 
 

 

Figure 3. Throwing Dice Probability Distribution with an 
Average Set of Incidence = 4.5 

hydrology and climatology.  
 

 
evens i 

 

Figure 2. Throwing Dice Probability Distribution with an Average Set of Incidence = 3.5 
 

 
      evens i 
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Figure 4.  The Probability Distribution of 12 Events with 

an Average Set of Events 6.5 and Standard Deviation 1.898 

 

 
Figure 5. Prediction River Basin B used Information from 

the Data River Basins A and C. 

 

 
 

Figure 6. Illustration River Basin with Complete and 

Missing Data 

 

While other information is needed in the prediction 
process including the amount of flow probability 
relationship information from both river basins 
namely, the joint probability between the river basin 

in the prediction (B) or river basin that provides 
information (A and C), in the same period for the 
other events. The information is also important to 
the average and deviation of the events in the long 

and the other time.  

 
Results and Discussion 
 

First simulation to predict the monthly average 
missing streamflows data on Katulampa station, 
which is located in the river upstream Ciliwung. The 

predictions were made using a monthly average 
streamflow data, with a scenario eliminating the 
twelve month data in 2002. Predictions of missing 
stramflows data, were based on monthly average 

streamflow data information on the nearest station 
which is Genteng. 

Prediction is basically done by utilizing the existing 
probability to generate a new probability in the year 
in which the predictions is performed. Prediction in 
this case is to generate data on flow rates at 
Katulampa station in 2002, then it must be known 
probability for flow in 2002. The probability of flow at 
Katulampa in 2002 can be generated by utilizing the 
nearest station flow data at Genteng in 2002, i.e. by 
finding the joint probability between the flow at 
Katulampa and Genteng station in 2002. This can be 
performed by using Equation 5 with its limitations 
(Equation 3 and 4), and with the help of the joint 
probability of information between the flow at Katu-
lampa and Genteng stations from other years (2003-
2006) and then joint probability between Katulampa 
and Genteng can be produced for the year 2002. 
Joint probability between Katulampa and Genteng 
in 2002 was a condition that must exist to generate 
predictions of Katulampa flow in 2002. Other infor-
mation required in this prediction is the average flow 
and the deviation from the station Katulampa in 
2003-2006. Predictions are also performed to flow at 
station Katulampa 2003, using information from the 
Batubeulah and Genteng stations. Prediction methods 
and processes are the same as when predicting the 
flow at Katulampa of 2002. 
 

Prediction is done using the minimum entropy 
(Equation 5), where pi is the probability that will be 
generated as the basis in making predictions, 
whereas qi is the initial information obtained from 
the joint probability of the average flow events 
between Katulampa and Genteng or Katulampa and 
Batubeulah (Equation 2). Initial information from 
the two observation stations function to improve the 
joint probability pi when performing predictions. 
Prediction of flow data on Katulampa station in 
2002, based on information from the Batubeulah 
station (prediction 1) and information from the 
Genteng station (prediction 2), can be seen in Table 1 
and Figure 7. The mean absolute errors (MAE) ave-
rage that occurred are 0.20 and 0.21. Whereas 
Prediction of flow data on Katulampa station in 
2003, based on information from the Batubeulah 
station (prediction 1) and information from the Gen-
teng station (prediction 2), can be seen in Table 2 
and Figure 8. The mean absolute errors (MAE) 
average that occurred are 0.12 and 0.16. 
 

 
 

Figure 7. Prediction of Missing Streamflows Data in 2002 
at Katulampa Station with Information Based from the 
Batubeulah and Genteng Station. 

Figure 3. Throwing Dic 
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Figure 5.    Prediction river basin B used information from the data river basins A and C. 
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Figure 8. Prediction of Missing Streamflows Data in 2003 

at Katulampa Station with Information Based from the 

Batubeulah and Genteng Station 

 

Conclusion 
 

Prediction of missing streamflows data at Katu-

lampa Station 2002 produced a monthly average 

errors of 0.20 with the data information from 

Batubeulah station and 0.21 with data information 

from Genteng Station, whereas predicttion of 

missing streamflows data at Katulampa Station 

2003 produced a monthly average errors of 0.12 with 

the data information from Batubeulah Station and 

0.16 with data information from Genteng Station. 

Based on the performance of the prediction, it can be 

seen that the method based on information entropy 

principles have the potential to be developed as the 

methods to be used to predict the missing monthly 

average discharge. 
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