
  
https://ced.petra.ac.id 

Note :  Discussion is expected before July, 1st 2024, and will be published in the “Civil Engineering Dimension”, volume 26, 

number 2, September 2024. 

ISSN :  1410-9530 print / 1979-570X online 

Published by : Petra Christian University 

Free-Vibration and Buckling Analyses of Beams using 

Kriging-Based Timoshenko Beam Elements with the Discrete 

Shear Gap Technique 

 
Wong, F.T.1*, Tanoyo, N.2, and Gosaria, T.C.3 
1 Civil Engineering Department, Faculty of Civil Engineering and Planning, Petra Christian University, 

Jl. Siwalankerto 121-131, Surabaya 60236, INDONESIA 
2 Site Manager and Structural Engineer, PT Nusa Raya Cipta Tbk., INDONESIA 
3 Structural Engineer, New Zealand Consulting Engineers Limited, NEW ZEALAND 

 

DOI: https://doi.org/10.9744/ced.26.1.21-31 

 
Article Info: 

Submitted: Aug 28, 2023  

Reviewed: Sept 13, 2023 

Accepted: Nov 21, 2023 

 

 
Abstract 
 

A family of locking-free Kriging-based Timoshenko beam elements 

with a new implementation of the discrete shear gap technique was 

recently developed (referred to as K-beam-DSG1 elements). Performance 

of the K-beam-DSG1 elements has been shown to be very satisfactory 

in the linear static analysis of beams for a wide variety of thicknesses. 

This paper presents further development of the K-beam-DSG1 elements 

to free vibration and bifurcation buckling analyses of prismatic and 

non-prismatic beams. Consistent Kriging-based mass matrices are 

used for free vibration analysis and similarly, consistent Kriging-

based geometric stiffness matrices are used for buckling analysis. The 

results show that for most of the cases, the K-beam-DGS1 elements 

yield remarkably accurate natural frequencies and critical compressive 

loads using a reasonable number of elements to discretize the beam. 

For an axially functionally graded fixed-fixed supported beam, 

however, the elements fail to predict the critical load accurately. 
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Introduction 
 

The finite element method (FEM) has now become a standard numerical method for solving boundary-value 

problems appearing in various engineering mathematical models. In the standard FEM, the approximated trial function 

over an element is constructed using a polynomial interpolation from the function values at the element nodal points. 

Kriging-based finite element method (K-FEM) is an alternative numerical method to the standard FEM. In the K-

FEM, the approximated trial function over an element is constructed using a Kriging interpolation from the function 

values not only at the element nodes but also the values at a set of nodes around the element (called satellite nodes) 

[1-3]. The element and its surrounding elements covering all the nodes constitute a domain of influencing nodes 

(DOI). One of the key advantages of K-FEM over the standard FEM is its ability to generate a stress field with higher 

accuracy and better smoothness using the same mesh and degrees of freedom. Additionally, K-FEM allows for 

solution refinements without changing the mesh or adding more degrees of freedom. A drawback of the K-FEM is 

that its computational procedure is much more expensive than that of the standard FEM.  

 

A major difficulty in the development and application of the K-FEM to shear-deformable beam, plate bending, and 

shell models is, as in the standard FEM, the shear locking phenomenon [4-6]. This phenomenon is a condition where 

https://creativecommons.org/licenses/by/4.0/
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the finite element model becomes excessively stiff as the beam, plate, or shell increasingly thins due to the presence 

of spurious transverse shearing stresses. In the applications of the K-FEM to the shear deformable (Timoshenko) 

beam model, the selective reduced integration (SRI) technique has been utilized to eliminate the shear locking [6]. 

While the SRI has been proven to be effective in eliminating the locking, the resulting shear force is only accurate at 

the single integration sampling point. Moreover, the use of the SRI worsens the overall shearing force distribution.  

 

Another technique to overcome the shear locking is proposed by Bletzinger et al. [7], namely the discrete shear gap 

(DSG) technique. The basic idea of the DSG technique is to replace the approximate displacement-based shear strain 

field with a substitute shear strain field determined from the interpolation of ‘shear gaps’ at the element nodes using 

the standard element shape functions. The DSG technique has been applied to eliminate shear locking in the Kriging-

based Timoshenko beam elements [8] (referred to as K-beam-DSG0 elements). In this application, the substitute 

shear strain field was derived from a Kriging interpolation of shear gaps at all nodes in the DOI. The developed K-

beam-DSG0 elements, however, are only shear-locking free for the elements with a cubic basis function and three 

element-layer DOI. After that, the implementation of the DSG was modified by changing the substitute shear strain 

field to the standard linear interpolation of shear gaps at the Kriging-based element nodes [9]. With this new 

implementation, the Kriging-based beam elements of all types (referred to as K-beam-DSG1 elements) are free from 

locking and able to give remarkably accurate displacements and bending moments for very thin to thick beams. The 

resulting shear force distribution, however, is piecewise constant over the elements.  

 

The previous study of the K-beam-DSG1 elements, [9], is limited to the case of linear static analysis of beams. This 

paper aims to further develop and test the K-beam-DSG1 elements for free vibration and bifurcation buckling 

analyses of thin-to-thick beams. The beams include prismatic as well as axially functionally graded tapered beams 

(that is, linearly varying cross-section beams with varying constituent material properties along the beam axis [10]). 

Hamilton’s principle is employed as the basis in deriving the finite element equations. Consistent Kriging shape 

functions are utilized to develop the mass matrix and the axial stress (geometric) stiffness matrix. The developed 

Kriging-based beam elements are subsequently tested for several free vibration and buckling benchmark problems.  

 

Kriging-Based Finite Element Method for Timoshenko Beams 

 

Variational Form of the Governing Equations 

 
Consider a Timoshenko beam model of the length L, made of an isotropic material but in general may not be 

homogeneous in the axial direction, with the Cartesian coordinates x-z and the deflection of the neutral axis, w, and 

the cross-sectional rotation, θ, as shown in Figure 1. The beam is subjected to an axial force P = P(t), a function of 

time t, positive in compression, at the ends of the beam. The axial force P is imposed at the outset, for example, by a 

pre-stressed bar or cable. The motion of the beam is described by the deflection and the rotation as functions of 

coordinate 0 ≤ x ≤ L and time t ≥ 0, that is, w = w(x, t) and θ = θ(x, t). 

 
Figure 1. Coordinate System and the Positive Sign Convention for the Beam Deflection, W, Cross-Section Rotation, Θ, and 

Axial Load P 

 

The governing equations for free vibration analysis of the beam including axial force effects on the beam bending 

can be established using Hamilton’s principle [11-12], viz. 

 ∫ 𝛿(𝑇 − (𝑈 + 𝑉𝑃)) 𝑑𝑡
𝑡2

𝑡1
= 0 (1) 

 

In this equation, T is the kinetic energy of the beam, U is the internal strain energy in the beam, VP is the potential 

energy associated with the initial axial force P, while δ is the variational operator. The principle states that the integral 

over any time interval t1 to t2 of the variation of the difference in the kinetic and total potential energies (U + VP) with 

respect to any virtual defection and rotation equals zero. The kinetic energy is given as [6,12]. 

x 

z 
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θ 

L 
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 𝑇 = ∫
1

2
𝜌𝐴𝑤̇2𝑑𝑥

𝐿

0
+ ∫

1

2
𝜌𝐼𝑦𝜃̇2𝑑𝑥

𝐿

0
 (2) 

 

where A is the area of the cross section, Iy is the second moment of area of the cross section about the y-axis, and  

is the mass density of the beam material (mass per unit volume). The dot sign over a variable denotes the partial 

derivative with respect to the time variable t. The strain energy in the beam is given as [6]: 

 𝑈 = ∫
1

2
𝐸𝐼𝑦𝜃,𝑥

2 𝑑𝑥
𝐿

0
+ ∫

1

2
𝐺𝐴s(𝑤,𝑥 − 𝜃)

2
𝑑𝑥

𝐿

0
 (3) 

 

where E and G are the modulus of elasticity and shearing modulus of the beam material, respectively, As = kA is the 

effective shear area, with k being a shear correction factor [13] to account for the difference of a constant shear stress 

distribution based on the Timoshenko beam theory and a parabolic actual shear stress distribution along the beam 

height. The comma symbol after a field variable denotes the partial derivative with respect to the independent variable 

after the comma, that is, coordinate x. The geometric parameters A, As, and Iy, and the material parameters , E, and 

G may generally vary along the beam length. Lastly, the potential energy of the axial force P is given as [12], [14]. 

 𝑉𝑃 = − ∫
1

2
𝑃𝑤,𝑥

2 𝑑𝑥
𝐿

0
 (4) 

 

Kriging-Based Finite Element Formulation 

 

Suppose the beam is divided into Ne finite elements with Np nodes. The kinetic energy, strain energy, and potential 

energy of the whole beam can be written as the sum of their element contributions, that is,  

 𝑇 = ∑ (∫
1

2
𝜌𝐴𝑤̇2𝑑𝑥

𝐿𝑒

0
+ ∫

1

2
𝜌𝐼𝑦𝜃̇2𝑑𝑥

𝐿𝑒

0
)

𝑁𝑒
𝑒=1  (5a) 

 𝑈 = ∑ ∫
1

2
𝐸𝐼𝑦𝜃,𝑥

2 𝑑𝑥
𝐿𝑒

0

𝑁𝑒
𝑒=1 + ∑ ∫

1

2
𝐺𝐴s(𝑤,𝑥 − 𝜃)

2
𝑑𝑥

𝐿𝑒

0

𝑁𝑒
𝑒=1  (5b) 

 𝑉𝑃 = ∑ − ∫
1

2
𝑃𝑤,𝑥

2 𝑑𝑥
𝐿𝑒

0

𝑁𝑒
𝑒=1  (5c) 

 

where Le is the length of element number e.   

 

Consider an element e and its domain of influencing nodes (DOI) covering n nodal points, as illustrated in Fig. 2 for 

a two-layer element DOI. The deflection field w and rotation field θ over the element can be approximated using 

Kriging interpolation as follows: 

 𝑤(𝑥, 𝑡) ≈ 𝑤ℎ(𝑥, 𝑡) = 𝐍𝑤
𝑒 (𝑥)𝐝𝒆(𝑡) (6a) 

 𝐍𝑤
𝑒 (𝑥) = [𝑁1(𝑥) 0 𝑁2(𝑥) 0 ⋯ 𝑁𝑛(𝑥) 0] (6b) 

 𝐝𝒆(𝑡) = [𝑤1(𝑡) 𝜃1(𝑡) 𝑤2(𝑡) 𝜃2(𝑡) ⋯ 𝑤𝑛(𝑡) 𝜃𝑛(𝑡)]T (6c) 

 𝜃(𝑥, 𝑡) ≈ 𝜃ℎ(𝑥, 𝑡) = 𝐍𝜃
𝑒 (𝑥)𝐝𝒆(𝑡) (7a) 

 𝐍𝜃
𝑒(𝑥) = [0 𝑁1(𝑥) 0 𝑁2(𝑥) ⋯ 0 𝑁𝑛(𝑥)] (7b) 

 

In these equations, Na(x), a = 1, 2, …, n, are Kriging shape functions constructed based on the n nodal points in the 

DOI (see [6], [8], [9]). Vector de(t) is a vector of the deflections and rotations at the nodal points in the DOI of 

element e. The numbering system for the indices is the local element-DOI numbering system. The number of nodal 

points n for each element varies depending on the number of element layers to cover the DOI and depending on 

whether the element is exterior or interior. For example, for the two-element layer DOI as shown in Figure 2, n = 4 

for the interior element while n = 3 for the left or right-end exterior element. 

 

The Kriging shape functions Na(x), a = 1, 2, …, n, are determined using a system of Kriging equations. The details 

of Kriging equations have been presented in previous works [6,8] and will not be repeated in the paper. To construct 

the Kriging equations, one must decide on a polynomial basis function and a correlation function. In this work, linear 

to cubic basis functions and the quartic spline correlation function with the middle values of the correlation 

parameter(see [8, Table 2]) are employed to construct the Kriging equations. 
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Figure 2. Beam Problem Domain, A Beam Element under Consideration, and Its Domain of Influencing Nodes 

 
Introducing Equations (6) and (7) into Equation (5), the kinetic energy, strain energy, and potential energy of the 
axial force P can be written as, respectively, 

 𝑇 = ∑
1

2
𝐝𝒆̇

T
(𝑡)𝐦𝒆𝐝𝒆̇(𝑡)

𝑁𝑒
𝑒=1  (8a) 

 𝐦𝒆 = ∫ 𝐍𝑤
𝑒 T

𝜌𝐴 𝐍𝑤
𝑒 𝑑𝑥

𝐿𝑒

0
+ ∫ 𝐍𝜃

𝑒 T
𝜌𝐼𝑦𝐍𝜃

𝑒𝑑𝑥
𝐿𝑒

0
 (8b) 

 𝑈 = ∑
1

2
𝐝𝒆T

(𝑡)𝐤𝒆𝐝𝒆(𝑡)
𝑁𝑒
𝑒=1  (9a) 

 𝐤𝒆 = ∫ 𝐍𝜃
𝑒 ,𝑥

T 𝐸𝐼𝑦𝐍𝜃
𝑒 ,𝑥 𝑑𝑥

𝐿𝑒

0
+ ∫ (𝐍𝑤

𝑒 ,𝑥 − 𝐍𝜃
𝑒)

T
𝐺𝐴s(𝐍𝑤

𝑒 ,𝑥 − 𝐍𝜃
𝑒)𝑑𝑥

𝐿𝑒

0
 (9b) 

 𝑉𝑃 = ∑ −
1

2
𝐝𝒆T(𝑡)𝑃𝐤g

𝑒𝐝𝒆(𝑡)
𝑁𝑒
𝑒=1  (10a) 

 𝐤g
𝑒 = ∫ 𝐍𝑤

𝑒 ,𝑥
T 𝐍𝑤

𝑒 ,𝑥 𝑑𝑥
𝐿𝑒

0
 (10b) 

 
Matrices me, ke, and kg

e defined by Equation (8b), Equation (9b), and Equation (10b) are the Kriging-based consistent 
mass matrix, stiffness matrix, and geometric stiffness matrix of element number e, respectively. The order of these 

matrices is 2n  2n.  
 
Substituting the energy terms in Equation (1) by the expressions given by Equation (8a), Equation (9a), and Equation 
(10a) and carrying out the variational operation give 

 ∫ (∑ 𝛿𝐝𝒆̇
T

𝐦𝒆𝐝𝒆̇𝑁𝑒
𝑒=1 − ∑ 𝛿𝐝𝒆T

(𝐤𝒆 − 𝑃𝐤g
𝑒)𝐝𝒆𝑁𝑒

𝑒=1 )  𝑑𝑡
𝑡2

𝑡1
= 0 (11) 

 
Consider the first term of Equation (11). Interchanging the integral and summation operator and then integrating the 
first term by parts leads to 

 ∑ ∫ 𝛿𝐝𝒆̇
T

𝐦𝒆𝐝𝒆̇𝑡2

𝑡1
𝑑𝑡

𝑁𝑒
𝑒=1 = ∑ ([𝛿𝐝𝒆T𝐦𝒆𝐝𝒆̇]

𝑡1

𝑡2
− ∫ 𝛿𝐝𝒆T𝐦𝒆𝐝̈𝒆 𝑑𝑡

𝑡2

𝑡1
)

𝑁𝑒
𝑒=1  (12) 

 
Since the basic condition imposed on the variation is δde(t1) = δde (t2) = 0, the first term on the right-hand side of 
Equation (12) is equal to zero. Interchanging the summation and integral again and substituting Equation (12) into 
Equation (11) gives 

 ∫ [∑ −𝛿𝐝𝒆T
(𝐦𝒆𝐝̈𝒆 + (𝐤𝒆 − 𝑃𝐤g

𝑒)𝐝𝒆)
𝑁𝑒
𝑒=1 ] 𝑑𝑡

𝑡2

𝑡1
= 0 (13) 

 
Equation (13) is written referring to the local element-DOI numbering system for each element e. This equation can 
also be expressed with reference to the global structural numbering system as follows: 

 ∫ −𝛿𝐃T(𝐌𝐃̈ + (𝐊 − 𝑃𝐊g)𝐃) 𝑑𝑡
𝑡2

𝑡1
= 0 (14a) 

 𝐌 = Α𝑒=1
𝑁𝑒 𝐦𝒆 ,  𝐊 = Α𝑒=1

𝑁𝑒 𝐤𝒆 ;  𝐊g = Α𝑒=1
𝑁𝑒 𝐤g

𝑒 (14b) 

 
In these equations, D is the structural nodal displacement vector, that is, 

 𝐃 = [𝑤1 𝜃1 𝑤2 𝜃2 ⋯ 𝑤𝑁𝑝
𝜃𝑁𝑝]

T
  (15) 
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Vector δD is a vector of variation of D, which may also be interpreted as a vector of virtual nodal displacement. 

Matrices M, K, and Kg are the consistent structural mass matrix, the structural stiffness matrix, and the structural 

geometric stiffness matrix, respectively. Notation A in Equation (15) denotes the assembling algorithm in the 

framework of the K-FEM, which includes all nodes in the element DOI (not only the element nodes as in the assembly 

procedure of standard FEM). Since the variation δD is arbitrary over any time interval t1 to t2, Equation (14a) can be 

satisfied in general only when [11] 

 𝐌𝐃̈(𝑡) + (𝐊 − 𝑃𝐊g)𝐃(𝑡) = 𝟎 (16) 

 

This system of equations is the discretized governing equations for free vibration of the beam including axial force 

stiffening effects. Discretized equations for free vibration without axial stiffening and for bifurcation buckling 

analysis can be obtained from Equation (16) by simply reducing it, respectively, to 

 𝐌𝐃̈(𝑡) + 𝐊𝐃(𝑡) = 𝟎 (17) 

 (𝐊 − 𝑃𝐊g)𝐃 = 𝟎 (18) 

 

In the case of free vibration, assuming the free vibration motion is simple harmonic with a circular frequency ω, the 

displacement vector can be expressed as [11] 

 𝐃(𝑡) = 𝐃0 sin(𝜔𝑡 + 𝜑) (19) 

 

where D0 represents the shape of the beam and φ is a phase angle. Introducing Equation (19) into Equation (17) leads to 

 (𝐊 − 𝜔𝟐𝐌)𝐃0 = 𝟎 (20) 

 

Therefore, the matrix equations for finding free vibration frequencies, Equation (20), and a buckling critical load, 

Eq. (18), are in the category of generalized eigenvalue problems. 

 

Implementation of the Discrete Shear Gap Technique 

 
Direct application of the discretized beam models, Eqs. (17) and (18), results in an over-stiff beam model, in particular 

for slender beams due to the shear locking phenomenon. Continuing the previous work [9], the DSG technique [7] is 

applied to the discretized beam models in order to avoid shear locking. The details of the DSG formulation are 

presented in Ref. [9].  

 

The DSG technique is implemented by replacing matrix (Nw,x − Nθ) in the shearing part of the stiffness matrix (i.e., 

the second term of the right-hand side of Eq. (9b)) with a substitute shear strain-displacement matrix, Bγ-bar, which 

is defined as [9]  

 𝐁𝛾 = 𝐁𝛾1 𝐁𝛾2 (21a) 

 𝐁𝛾1 =
1

𝐿𝑒
[−1 1] (21b) 

 𝐁𝛾2 = [
−1 − ∫ 𝑁1𝑑𝑥

𝑥𝑎

𝑥1
0 − ∫ 𝑁2𝑑𝑥

𝑥𝑎

𝑥1
⋯

−1 − ∫ 𝑁1𝑑𝑥
𝑥𝑎+1

𝑥1
0 − ∫ 𝑁2𝑑𝑥

𝑥𝑎+1

𝑥1
⋯

  

 
1 − ∫ 𝑁𝑎𝑑𝑥

𝑥𝑎

𝑥1
⋯ 0 − ∫ 𝑁𝑛𝑑𝑥

𝑥𝑎

𝑥1

1 − ∫ 𝑁𝑎+1𝑑𝑥
𝑥𝑎+1

𝑥1
⋯ 0 − ∫ 𝑁𝑛𝑑𝑥

𝑥𝑎+1

𝑥1

] (21c) 

 

Results and Disscussion 
 
This section presents the results of free vibration and buckling structural analyses of Timoshenko beams using 

different types of K-beam-DSG1 elements. Symbols of the form P*-* are used to identify different types of Kriging-

based elements. The first asterisk after the letter P in the symbol is a number to denote the degree of the polynomial 

basis function used in Kriging interpolation, that is, ‘1’ for a linear basis, ‘2’ for a quadratic basis, and ‘3’ for a cubic 

basis, while the second asterisk denotes the number of element layers of the domain of influencing nodes. For 

example, P2-3 means that a quadratic basis and three layers of elements are used in the construction of Kriging shape 
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functions. In all analyses, the quartic spline correlation functions are employed to construct Kriging shape functions. 

The correlation function parameters are taken to be the mid-value between the lower and upper bounds values 

presented in Wong et al. (see Table 2 in Ref. [8]).   

 

The Gauss-Legendre quadrature is employed to evaluate the integrals corresponding to bending stiffness (the first 
term in the right-hand side of Equation (9b)), shearing stiffness (the second term in the right-hand side of Equation 

(9b)), DSG (Equation (21c)), mass (Equation (8b)), and geometric stiffness (Equation (10b)). For analysis of prismatic 
beams, the number of quadrature sampling points used is three to evaluate all of the integrals. This number is chosen 

based on some trials to obtain an accurate yet inexpensive number of quadrature points. For analysis of beams with 
varying geometrical and material properties, the number of quadrature points to evaluate all of the integrals is five, 

except for evaluating the DSG, the number of quadrature points remains three.  
 

Natural Frequencies of Prismatic Beams 
 

Consider the free vibration of thick and very thin simply supported beams. The geometrical and material parameters 

are L = 10 m, the width b = 1 m, k = 5/6, E = 200  109 N/m2,   = 0.3,  = 5700 kg/m3, L/h = 5 for the case of thick 

beam and L/h = 1000 for the case of very thin beam. Following Lee and Schultz [15], the resulting circular natural 

frequencies, ωm, m = 1, 2, 3, …, are expressed in terms of nondimensionalized frequency parameters, λm, defined as  

 𝜆𝑚 =  √𝜔𝑚𝐿2√
𝜌𝐴

𝐸𝐼𝑦
 (22) 

 

The frequency parameters obtained using a converged solution of the pseudo-spectral method [15] are taken as the 
reference solution for the thick beam, whereas the frequency parameters based on the Euler-Bernoulli beam theory 

[15] are taken as the reference solution for the very thin beam.   
 

Table 1. Normalized Frequency Parameters of a Thick Simply-supported Timoshenko Beam (L/h = 5) Modeled using 16 K-

beam-DSG1 Elements and 16 SAP2000 Framed Elements 

Mode Shape λm * 
λm /λm * 

P1-2 P1-3 P2-2 P2-3 P3-3 SAP2000 

1 3.0453 0.9996 1.0001 0.9999 0.9999 0.9999 1.0066 

2 5.6716 0.9982 0.9997 0.9993 0.9991 0.9991 1.0156 

3 7.8395 0.9952 0.9978 0.9977 0.9968 0.9967 1.0172 

4 9.6571 0.9911 0.9938 0.9951 0.9924 0.9925 1.0123 

5 11.2220 0.9865 0.9878 0.9920 0.9858 0.9862 1.0036 

6 12.6022 0.9823 0.9800 0.9890 0.9775 0.9776 0.9925 

7 13.0323 1.0000 1.0000 1.0000 1.0000 1.0000 1.0408 

8 13.4443 0.9993 0.9993 0.9993 0.9973 0.9955 1.0758 

9 13.8433 0.9795 0.9713 0.9870 0.9705 0.9705 1.0999 

10 14.4378 0.9976 0.9977 0.9976 0.9964 0.9898 1.0992 

11 14.9766 0.9791 0.9628 0.9867 0.9617 0.9617 1.0952 

12 15.6676 0.9957 0.9780 0.9957 0.9772 0.9637 1.0742 

13 16.0241 0.9818 0.9738 0.9891 0.9736 0.9735 - 

14 16.9584 0.9903 0.9559 0.9938 0.9572 0.9380 - 

15 17.0019 0.9917 0.9918 0.9951 0.9915 0.9887 - 

Note:  * Convergent solution from the pseudospectral method [15]  

 
The simply supported beams were analyzed using different types of 16 K-beam-DSG1 elements of equal length. The 

resulting normalized frequency parameters for the cases of thick and very thin beams are presented in Tables 1 and 
2, respectively. The results obtained using 16 frame elements contained in commercial software SAP2000 are also 

included for comparison. Table 1 demonstrates that, for the case of thick beam, all types of the K-beam-DSG1 elements 

yield highly accurate results. The errors for the first four natural frequencies are less than 1%. The most accurate 
ones are generally achieved using the type of P2-2, with a maximum error of 1.33% for the 11th natural frequency. It 

is apparent that for the thick beam, the results of the K-beam-DSG elements are overall more accurate than those 
obtained using SAP2000.  

 
Table 2 shows that, for the case of the very thin beam, the K-beam-DSG1 elements give very accurate results for 

several first low frequencies but are very inaccurate in predicting high frequencies. The errors of less than 1% are 
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achieved up to the 5th lowest frequencies. The most accurate ones are achieved using the type of P3-3, the errors of 

which are less than 1% up to the 8th frequency. In general, for the very thin beam, the results of K-beam-DSG1 
elements are less accurate than those obtained using SAP2000. 

 

To study the convergence of the solutions using the P3-3 type of the K-beam-DSG1, the very thin beam was analyzed 

using a different number of elements, that is, 4, 8, 16, and 32. The resulting normalized frequency parameters are 

listed in Table 3. It is apparent that the frequency parameters converge to the Euler-Bernoulli beam frequencies. The 

very thin beam needs 32 K-beam-DSG1 P3-3 elements to give very accurate results for the first 15th natural 

frequencies. 

 
Table 2. Normalized Frequency Parameters of A Very Thin Simply-Supported Timoshenko Beam (L/h = 1000) Modeled using 

16 K-Beam-DSG1 Elements and 16 SAP2000 Framed Elements 

Mode Shape λm * 
λm /λm *  

P1-2 P1-3 P2-2 P2-3 P3-3 SAP2000 

1 3.1416 0.9997 1.0002 1.0000 1.0000 1.0000 1.0000 

2 6.2832 0.9989 1.0006 1.0001 0.9999 0.9999 1.0000 

3 9.4248 0.9982 1.0010 1.0007 0.9997 0.9997 0.9999 

4 12.5664 0.9983 1.0011 1.0025 0.9992 0.9993 0.9998 

5 15.7080 1.0003 1.0010 1.0064 0.9988 0.9987 0.9996 

6 18.8496 1.0059 1.0014 1.0142 0.9992 0.9982 0.9991 

7 21.9911 1.0169 1.0035 1.0278 1.0021 0.9983 0.9981 

8 25.1327 1.0360 1.0094 1.0502 1.0101 1.0014 0.9963 

9 28.2743 1.0666 1.0227 1.0849 1.0269 1.0121 0.9933 

10 31.4159 1.1132 1.0487 1.1369 1.0575 1.0381 0.9883 

11 34.5575 1.1830 1.0958 1.2137 1.1095 1.0894 0.9803 

12 37.6991 1.2875 1.1773 1.3278 1.1959 1.1825 0.9678 

13 40.8407 1.4493 1.3175 1.5037 1.3412 1.3492 - 

14 43.9823 1.7252 1.5730 1.8025 1.6031 1.6699 - 

15 47.1239 2.3425 2.1557 2.4624 2.1980 2.4189 - 

Note:  * Exact solution of Euler-Bernoulli beam theory [15]   

 
Table 3. Convergence of Normalized Frequency Parameters of A Very Thin Simply-Supported Timoshenko Beam (L/h = 

1000) Modeled using K-Beam-DSG1 P3-3-QS Elements 

Mode Shape λm * 
λm /λm * 

4 elements 8 elements 16 elements 32 elements 

1 3.1416 1.0001 0.9999 1.0000 1.0000 

2 6.2832 0.9893 0.9996 0.9999 1.0000 

3 9.4248 1.3784 0.9984 0.9997 1.0000 

4 12.5664 18.9218 0.9981 0.9993 0.9999 

5 15.7080 123.176 1.0343 0.9987 0.9998 

6 18.8496 130.479 1.2119 0.9982 0.9996 

7 21.9911 117.018 1.8886 0.9983 0.9994 

8 25.1327 103.708 12.8908 1.0014 0.9991 

9 28.2743 - 54.3584 1.0121 0.9987 

10 31.4159 - 66.1609 1.0381 0.9984 

11 34.5575 - 67.7342 1.0894 0.9981 

12 37.6991 - 65.3736 1.1825 0.9980 

13 40.8407 - 61.9813 1.3492 0.9981 

14 43.9823 - 58.5052 1.6699 0.9987 

15 47.1239 - 55.1335 2.4189 1.0002 

Note:  * Exact solution of Euler-Bernoulli beam theory [15] 

 

Critical Buckling Loads of Prismatic Beams 

 
To examine the accuracy of the K-beam-DGS1 elements of different types in predicting the critical buckling load, 

an investigation was conducted on a fixed-fixed supported beam with varying length-to-thickness ratios (L/h = 5, 10, 

20, 100, 1000). The beam was discretized using eight K-beam-DGS1 elements. The geometrical and material 

parameters are the same as in the previous free vibration analysis. For comparison, the beam was also analyzed using 
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the commercial software SAP2000. The resulting critical loads were normalized to the corresponding exact solutions, 

which were obtained from the exact formula given as ([16] as cited in [12]) 

 𝑃cr =  
𝜋2𝐸𝐼𝑦

𝐿eff
2 (

1

1+
𝜋2𝐸𝐼𝑦

𝐿eff
2 𝐺𝐴s

) (23) 

 

where Leff is the effective buckling length (Leff
 = L/2 for fixed-fixed supported beams). The normalized critical loads 

and their corresponding exact values are listed in Table 4.  

 

Table 4 demonstrates the accuracy of the K-beam-DSG1 elements for a wide range of bean thicknesses. The largest 

error occurred in the case of the thick beam (L/h = 5) with a maximum error of 2.7% for the element type P3-3. It 

can be seen that increasing the polynomial degree in the Kriging interpolation does not guarantee an increase in 

accuracy. The most accurate element type in general is P2-3, except for the thick beam, the most accurate type is P2-

2. In comparison to the SAP2000 results, for the cases of thick and moderately thick beams (L/h = 5 and 10), the best 

performer of the K-beam-DSG1 yields more accurate results than SAP2000. For the cases of thin to very thin beams 

(L/h =20, 100, 1000), however, SAP2000 performs better than the best performer of the K-beam-DSG1.  

 
Table 4. Normalized Critical Buckling Loads (Pcr / Pcr exact) of a Fixed-Fixed Supported Timoshenko Beam of Different Length-

To-Thickness Ratios Modeled using Eight K-Beam-DSG1 Elements and Eight Framed Elements Contained in SAP2000 

Element type 
L/h 

5 10 20 100 1000 

P1-2 0.9926 1.0039 1.0077 1.0090 1.0091 

P1-3 0.9953 1.0066 1.0105 1.0118 1.0119 

P2-2 1.0010 1.0130 1.0171 1.0185 1.0186 

P2-3 0.9893 1.0013 1.0053 1.0067 1.0068 

P3-3 0.9730 0.9885 0.9931 0.9947 0.9948 

SAP2000 1.0107 1.0046 1.0017 1.0006 1.0005 

Pcr exact values (kN): 4.69E+06 7.47E+05 1.00E+05 8.22E+02 8.22E-01 

 

Furthermore, to study the convergence characteristics of the K-beam-DSG1 elements, the fixed-fixed supported beam 

with the length-to-thickness ratio L/h = 10 was discretized using different numbers of elements, viz. 4, 8, 16, and 32. 

Table 5 shows the normalized critical load results. It can be seen that all types of the K-beam-DSG1 elements 

converge to the exact solution, or, at least to a value close to the exact solution. The convergence characteristic is, 

however, non-monotonic (fluctuating).  

 
Table 5. Normalized Critical Buckling Loads (Pcr / Pcr exact) of A Clammed-Supported Timoshenko Beam of L/h = 10 

Modeled using Different Numbers and Different Types of the K-beam-DSG1 Element 

Number of elements P1-2 P1-3 P2-2 P2-3 P3-3 

4 1.1527 1.1142 1.1712 1.1186 1.1531 

8 1.0039 1.0066 1.0130 1.0013 0.9885 

16 0.9966 1.0011 0.9998 0.9988 0.9983 

32 0.9986 1.0002 0.9998 0.9997 0.9997 

 

Natural Frequencies of Axially Functionally Graded Tapered Cantilever Beams 

 

This and the next numerical tests refer to the work of Shahba et al. [10] on free vibration and stability analyses of 

axially functionally graded beams. This test focuses on a tapered cantilever beam as shown in Figure 3, with three 

different taper ratios c = 0.2, 0.5, and 0.8. The tapered beam is made of two constituents, namely, aluminum (Ea = 70 

GPa, a = 2702 kg/m3) and zirconia (Ez = 200 GPa, z = 5700 kg/m3). The material properties vary along the beam 

axis, as specified by the following: 

 𝐸 =  200 − 130 (
𝑥

𝐿
)

2
 (24a) 

 𝜌 =  5700 − 2998 (
𝑥

𝐿
)

2
 (24b) 
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The Poisson’s ratio is taken to be constant  = 0.3. The resulting natural circular frequencies are presented in 
dimensionless natural frequencies (m = 1, 2, 3, …) 

 𝜔̅𝑚 = 𝜆𝑚
2 =  𝜔𝑚𝐿2√

𝜌0𝐴0

𝐸0𝐼𝑦0
 (25) 

 
where the subscript 0 denotes the value of the parameter at x = 0.  

 
Figure 3. Tapered Cantilever Beam Geometrical Data 

 
Following Shahba et al. [10], the beam was analyzed using 30 K-beam-DSG1 elements of the types P2-2 and P3-3. 
In addition, it was analyzed using 30 elements of the standard four-node cubic beam element with the DSG technique 
[17]. Table 6 lists the free vibration analysis results together with the ones reported by Shahba et al. [10]. The results 
of the four-node cubic element can be used as the reference solution since the total number of nodes involved in the 
analysis is 91, which is nearly 3 times larger than the other elements. Moreover, a study on free vibration analysis of 
a homogeneous tapered beam with taper ratio c = 0.2 (Table 7) shows that this standard element is the most accurate 
one compared to the exact results reported by Leung et al. ([18] as cited in [10]). Table 6 shows the K-beam-DSG 

elements yield very accurate results with a maximum difference from the standard cubic element results of −0.29% 
(lower). As a comparison, the results of Shahba et al. [10] have a maximum difference of +0.32% (higher).  
 

Table 6. The First Four Dimensionless Natural Frequencies of Axially Functionally Grade Tapered Cantilever Beams of 
Different Taper Ratios, Modeled using 30 Beam Elements of Different Types 

Mode Shape 
K-beam-DSG1 Four-node cubic element Shahba et al. [10] 

P2-2 P3-3   

c = 0.2 
1 3.995 3.995 3.995 3.996 
2 15.02 15.02 15.02 15.02 
3 30.73 30.73 30.77 30.81 
4 47.18 47.16 47.30 47.44 

c = 0.5 
1 4.238 4.238 4.239 4.239 
2 14.42 14.42 14.42 14.43 
3 28.91 28.91 28.94 28.98 
4 45.12 45.10 45.23 45.36 

c = 0.8 
1 4.715 4.715 4.715 4.718 
2 13.46 13.46 13.46 13.48 
3 25.90 25.90 25.93 25.97 
4 40.66 40.64 40.74 40.87 

 
Table 7. The First Four Dimensionless Natural Frequencies of A Homogeneous Tapered Cantilever Beam of Taper Ratio c = 

0.2, Modeled using 30 Beam Elements of Different Types 

Mode Shape 
K-beam-DSG1 Four-node cubic 

element 
Shahba et al. 

[10] 
Leung et al.  

[18] P2-2 P3-3 

1 3.331 3.331 3.331 3.331 3.330 
2 14.29 14.29 14.29 14.29 14.29 
3 30.68 30.67 30.71 30.75 30.71 
4 47.63 47.62 47.75 47.84 47.70 

Sect. A-A 

y 

b 

h(x) 

z 

L 

x 

z 

A 

A 

h0 

L = 10 m, ℎ0 = ξ12 m ≈ 3.464 m, b = 1 m 

Shear correction factor k = 5/6 

ℎ(𝑥) = ℎ0 (1 − 𝑐
𝑥

𝐿
) , c : taper ratio 
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Critical Buckling Loads of Axially Functionally Graded Tapered Beams 

 
Using the same beam as in the previous test but with different support cases, a series of buckling analyses using 30 

K-beam-DSG1 elements of types P2-2 and P3-3 and using the standard four-node cubic beam elements was carried 

out. The resulting critical loads were expressed in terms of dimensionless critical load defined as 

 𝑃̅cr =  
𝑃𝑐𝑟 𝐿

2

𝐸𝑜𝐼0
 (26) 

 

The analysis results are presented in Table 8 together with those from Shahba et al. [10] for comparison.   

 
Table 8. Dimensionless Critical Buckling Loads of An Axially Functionally Graded Timoshenko Beam of Different Taper 

Ratios, with Different Supports, Modeled using 30 Beam Elements of Different Types 

Beam support Taper ratio, c 
K-beam-DSG1 Four-node cubic 

element 

Shahba et al. 

[10] P2-2 P3-3 

Fixed-free 0.2 1.5871 1.5871 1.5870 1.5875 

 0.5 0.9824 0.9824 0.9824 0.9833 

  0.8 0.3656 0.3655 0.3655 0.3676 

Hinge-hinge 0.2 4.0128 4.0126 4.0137 4.0176 
 0.5 2.0232 2.0231 2.0236 2.0276 

  0.8 0.5460 0.5456 0.5458 0.5502 

Fixed-fixed 0.2 8.1356 6.2595 8.9097 8.9368 
 0.5 5.0176 3.9782 5.1347 5.1594 

  0.8 1.6236 1.5358 1.6147 1.6442 

 

Taking the results obtained using the four-node cubic element as the reference (for the same reason as 

aforementioned), it is seen that the K-beam-DSG1 elements are able to give very accurate results for the cantilever 

and simply supported axially functionally graded beams. The results are generally more accurate than those of Shahba 

et al. [10]. However, the results for the fixed-fixed supported beam are surprisingly very inaccurate with the 

maximum error of about 30% for the taper ratio c = 0.2 using the P3-3. The authors suspect that the inability of the 

K-beam-DSG1 elements to correctly predict the critical load for this particular case is due to the inability of the 

Kriging interpolation to capture the buckling mode. As a remark, the same fixed-fixed supported beam but using a 

homogeneous material has also been analyzed using the P3-3 and P2-2 K-beam-DSG1 elements. In this case, the 

results are very accurate with a maximum error of 0.32%.   

 

Conclusions 
 

A family of Kriging-based Timoshenko beam elements utilizing the DSG technique has been developed for free 

vibration and buckling analyses of prismatic as well as non-prismatic, axially functionally graded beams. The 

discretized equations were derived based on the Hamilton’s principle. The performance of the K-beam-DSG1 

elements of different types in predicting natural frequencies of free vibration and in predicting critical buckling loads 

has been examined using several prismatic and axially functionally graded taper beam examples. The examination 

results showed that the K-beam-DSG1 elements in general can predict natural frequencies and buckling loads very 

accurately with a reasonable number of elements. However, there was an anomaly in the case of a fixed-fixed axially 

functionally graded taper beam, in which the K-beam-DGS1 elements failed to predict the critical loads accurately. 

This anomaly needs further study to investigate the reasons for the failure and to improve the K-beam-DSG1 

elements.  
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