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 Abstract 
 
Contractors face most of the construction risks among stakeholders, and 
insurance is a common method to mitigate these risks. However, not all 
risks are insurable. While prior studies have typically assessed risk 
insurability through a binary approach (insurable versus non-insurable) 
and lacked clear criteria, this study offers a novel perspective by 
evaluating the insurability of construction risks based on four criteria: 
‘accidental events,’ ‘quantifiable,’ ‘numerous and homogenous,’ and 
‘evaluable.’ This study develops a fuzzy-based model to assess the degree 
of the construction risk insurability, accounting for the uncertainty, 
imprecision, and vagueness inherent in evaluating insurability against 
a specific criterion and criteria combinations. The model is applied to 
assess the insurability of several construction risks, illustrating its 
practical application. This paper concludes by discussing the model’s 
limitations and suggesting directions for future research. 
 

This is an open access article under the CC BY license. 

 

Keywords:  
construction risks, 
Fuzzy Inference System, 
insurability. 
  

 

Corresponding Author:  
Leonardo Yonatan Tan 
Department of Civil Engineering, 
Parahyangan Catholic University 
Jl. Ciumbuleuit 94, Bandung 40141, 
INDONESIA  
Email: tan.leonardo@yahoo.co.id 

 

 
Introduction 
 
The construction industry is inherently unique, with projects operating in a dynamic and ever-shifting environment. 
The specific nature of construction projects raises numerous risks that stakeholders must actively manage [1-3]. 
These risks can significantly impact the project objectives, including budget, quality, and time. Ultimately, risks can 
adversely influence business profitability, customer satisfaction, and project success [4]. Therefore, proactively 
identifying, assessing, monitoring, and managing risks is crucial to project success. Since risks can only be mitigated, 
not eliminated, effective risk minimization strategies often involve sharing or allocating risks to appropriate parties. 
Strategically allocating risks can dramatically improve the likelihood of a project’s success [4-6]. The fundamental 
principle is to assign risks to the party best positioned to manage and control risks’ potential impact [7]. 
 
In construction projects, the contractor often faces more risks than the client. Accordingly, the contractor must have 
strategies to reduce these risks, and one strategy is transferring the risks to a third party, the insurance firm [8]. An 
agreed-upon insurance policy will bind the insurance firm (the insurer) and the contractor (the insured) legally [9]. 
As the insured party, the contractor may reasonably expect that most of the risks associated with construction 
activities will be covered under a construction insurance policy. However, an insurance policy usually only covers 
the risks mentioned as uninsured, leaving numerous ‘unspecified’ risks open to interpretation [10,11]. This situation 
creates a breeding ground for conflict and disputes between contractors and insurers, reducing the intended risk-
mitigation benefits for both parties (e.g., delayed project finish) [12]. 
 
Studies on the insurability of construction risks are relatively scant, with much of it relying on empirical analyses of 
insurance claim databases. The current approach also often creates a dichotomy between insurable and uninsurable 
risks. For example, Perera et al. [13] and Halwatura [14] use insurance claim databases to identify characteristics of 
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risks that are likely to be insured. Owusu-Manu et al. [9] and Hatmoko et al. [15] explore the perspectives of 
contractors and insurers by surveying which construction risks are deemed insurable or uninsurable. These studies 
reveal a significant disparity between the perspectives of contractors and insurers, with each group identifying 
different risks as insurable or uninsurable. Berliner [16] further argues that risk insurability is influenced by ‘risk 
size,’ a subjective factor that depends on the expert or assessor’s perspective, which can introduce imprecision into 
the assessment. 
 
Bunni [8] establishes four criteria for determining insurable risk: insurable risks must be accidental and fortuitous, 
have a quantifiable impact and damage, be homogenous and frequent, and possess an identifiable cause. However, 
no studies have directly assessed the insurability of risks solely within this framework. Therefore, this study seeks to 
bridge the gap between these differing perspectives by measuring the insurability of construction risks according to 
their fitness to these insurable risk criteria. 
 
While this study adopts Bunni’s criteria for evaluating construction risk insurability, several critical observations 
must be made. First, two extreme scenarios exist: one where all criteria are satisfied, classifying the risk as insurable, 
and another where none are met, rendering the risk uninsurable. However, between these extremes lies a gradual 
transition from one state to another based on various possible combinations. Second, the assessment of each of these 
four criteria cannot always be determined in a binary fashion, either ‘yes’ or ‘no’ for belonging to a set for two key 
reasons: first, the criteria often lack clear-cut boundaries, and second, evaluating whether a risk meets specific criteria 
frequently involves a spectrum of membership, ranging from complete exclusion to full inclusion within the set. 
Consequently, this study employs fuzzy set theory, introducing a novel approach by developing a model that more 
realistically and flexibly measures construction risk insurability. Furthermore, the model accounts for the uncertainty, 
imprecision, and vagueness inherent in evaluating insurability against a specific criterion and criteria combinations. 
 
Fuzzy Inference Systems (FIS) are employed as an optimal method to address the inherent imprecision in expert 
judgments. FIS enhances the accuracy of the risk assessment process by applying fuzzification, processing the 
information through an inference system, and translating the results via defuzzification [17,18]. This approach aims 
to create a more consistent and reliable evaluation of construction risk insurability. 
 
Literature Review 
 
Construction Risk Insurability 
 
Construction insurance utilization involves numerous factors. Risk mitigation through insurance-based risk transfer 
is influenced by the contractor’s trust in the insurer, their knowledge and experience with insurance, and their 
willingness to pay premiums [13,14,19-22]. However, it is crucial to acknowledge that not all risks, even those 
potentially covered by a Contractor’s All Risk (CAR) policy, are insurable. CAR policies often effectively cover 
risks like theft of materials and tools, equipment damage, third-party property damage, and contractor payment delays  
[20,22-25]. Pramudya [10] examines construction risk insurance and identifies 76 prevalent risks across different 
construction types, e.g., buildings, infrastructure, housing, and ground construction. This study highlights a significant 
gap between contractors and insurers regarding the insurability of risks under CAR insurance policies. 
 
Hatmoko et al. [15] deal with risk insurability among Indonesian contractors and insurers, revealing agreement on 
only 27 of 42 identified risks. Twelve are deemed insurable, fifteen are non-insurable, and fifteen remain elusive. 
Similarly, Owusu-Manu et al. [9], in their study of complex project deals in Ghana, identify 54 risks and find that 
most respondents consider project risks, such as construction design errors, payment delays, workplace accidents, 
property damage, fire, earthquakes, and storms insurable. It is worth noting that  Owusu-Manu et al. [9] and Hatmoko 
et al. [15] employ a binary insurability assessment, i.e., insurable and non-insurable, which can potentially force 
nuanced risks into an inflexible categorization. 

 
Insurable Risk Criteria 
 
Bunni [8] contends that specific limitations are essential for viable insurance transactions, and these limitations 
implicitly define the criteria for insurable risk. Firstly, insurance fundamentally relies on probability, requiring an 
inherent degree of unpredictability (‘accidental or fortuitous events,’ coded as C1) in the insured subject matter. 
Secondly, insurable risks should ideally be quantifiable to enable the application of probability theories and the law 
of large numbers, underpinning accurate premium calculations (‘quantifiable,’ coded as C2). Thirdly, insurable risks 
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conform to insurance market standards, with numerous and homogeneous insured objects facilitating effective risk 
selection methods (‘numerous and homogenous,’ coded as C3). Finally, an insurable risk should permit verification 
of loss occurrence, damage causation, and quantifiable damage assessment (‘evaluable,’ coded as C4). 
 
Method 
 
Figure 1 depicts the overall research framework. The initial phase involves identifying construction risks and formulating 
a questionnaire designed for contractors and insurers to evaluate these risks against insurable risk criteria. The second 
block introduces the development and implementation of a fuzzy model. This model analyzes questionnaire responses 
to determine the insurability of the identified risks based on their alignment with the defined insurable risk criteria. 
 

 
Figure 1. Overall Research Framework 

 
Fuzzy Inference System 
 
Previous studies frequently employ the FIS in risk management studies to interpret results, particularly regarding risk 
impact. The FIS proves valuable in analyzing respondents’ perspectives on risk assessment [26,27]. The FIS process 
typically involves three primary steps: (1) fuzzification, converting inputs into linguistic membership degrees (e.g., 
low, medium-low, medium-high, high); (2) fuzzy inference, applying fuzzy rules to map input relationships and 
determine output membership degrees; and (3) defuzzification, transforming the output membership degree into a 
precise numerical value using a chosen method. The FIS output indicates the extent to which risk factors align with 
insurable risk criteria from the respondents’ viewpoints, thus providing a measure of risk insurability. The 
methodology and procedures for Fuzzy Risk Insurability modeling in this study are described below: 
1. Determining the membership for fuzzy input and output variables 

The precise quantification of subjective judgments can be difficult. Fuzzy modeling mechanisms, such as 
Triangular Fuzzy Numbers (TFNs) and Trapezoidal Fuzzy Numbers (TpFNs) TFNs and TpFNs are commonly 
used in construction management research due to their simplicity in concept and application. These fuzzy numbers 
are characterized by an upper limit, lower limit, and a most likely value, effectively representing respondents’ 
inputs within linguistic categories [28]. This study surveys respondents regarding specific risks and their 
alignment with insurability criteria. The frequency with which each insurable risk criterion is met across 
respondent groups serves as the model’s input. The frequencies of responses on C1, C2, C3, and C4 are mapped 
to four linguistic memberships: Low (L), Medium Low (ML), Medium High (MH), and High (H). Table 1 and 
Figure 2 illustrate the corresponding fuzzy numbers. Equations (1) and (2) demonstrate the formulas used to 
calculate the membership degrees for TFNs and TpFNs, respectively. 

µ Ã(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

 

𝑥𝑥 − 𝐿𝐿
𝑀𝑀 − 𝐿𝐿

, 𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑀𝑀
𝑈𝑈 − 𝑥𝑥
𝑈𝑈 −𝑀𝑀

, 𝑀𝑀 ≤ 𝑥𝑥 ≤ 𝑈𝑈
0 , 𝑥𝑥 < 𝐿𝐿 𝑜𝑜𝑜𝑜 𝑥𝑥 > 𝑈𝑈

 (1) 
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µ Ã(𝑥𝑥) =
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⎪
⎧

 

𝑥𝑥 − 𝐿𝐿
𝑀𝑀1 − 𝐿𝐿

, 𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑀𝑀1

1, 𝑀𝑀1 ≤ 𝑥𝑥 ≤ 𝑀𝑀2
𝑈𝑈 − 𝑥𝑥
𝑈𝑈 −𝑀𝑀2

, 𝑀𝑀2 ≤ 𝑥𝑥 ≤ 𝑈𝑈

0 , 𝑥𝑥 < 𝐿𝐿 𝑜𝑜𝑜𝑜 𝑥𝑥 > 𝑈𝑈

 (2) 

where µÃ(x) represents the membership degree of x at linguistic A, L is the lowest x on fuzzy numbers, M is 
x with the highest membership on fuzzy numbers, and U is the highest x on fuzzy numbers. 
 
This study defines a ‘risk fulfillment degree’ (DF) that measures alignment with insurable risk criteria. The 
DF is a crisp value ranging from 0.00 (non-insurable) to 1.00 (fully insurable). Each insurable risk criterion 
is assigned a score from 1 (Low) to 4 (High). A maximal fulfillment degree and insurability (1.00) is achieved 
when a score of 4 is assigned to all criteria. Conversely, the lowest fulfillment degree and non-insurability 
(0.00) is indicated by a score of 1 across all criteria. Due to the possible combinations of scores between 16 
and 4, there are 13 potential DF output variations. The DF range (0 to 1) is therefore linearly segmented into 
13 singleton fuzzy numbers: (0.00, 0.08, 0.17, 0.25, 0.33, 0.42, 0.50, 0.58, 0.67, 0.75, 0.83, 0.92, 1.00). 
 

Table 1. TFN and TpFN Fuzzy Numbers for Model Inputs 
Linguistic Category Membership Function Corresponding Fuzzy Numbers 

Low (L) Trapezoidal (0.00, 0.00, 0.2, 0.33) 
Medium Low (ML) Triangular (0.00, 0.33, 0.66) 
Medium High (MH) Triangular (0.33, 0.66, 1.00) 

High (H) Trapezoidal (0.66, 0.8, 1.00, 1.00) 
 

 
Figure 2. Model Input’s Fuzzy Number 

 
2. Constructing fuzzy rules for Inference System 

The FIS employed in this study relies on a Mamdani-type inference system, using ‘AND’ and ‘OR’ fuzzy logic 
operators. The ‘AND’ operator determines the minimum value among inputs, while the ‘OR’ operator determines 
the maximum [29]. This study incorporates four inputs, each with four linguistic categories. Consequently, the 
FIS accommodates 44 (or 256) potential output combinations, managed through a comprehensive set of fuzzy 
rules. 
 
These fuzzy rules account for all 256 possible input combinations. Due to the lack of information on Bunni’s 
insurable risk criteria, this paper assigns equal weight to each criterion. As a result, the specific order of inputs 
does not impact the output. Additionally, input combinations with equal sums yield identical outputs. For example, 
input patterns of ‘High, High, Low, Low’ (H, H, L, L) and ‘Medium-High, Medium-High, Medium-Low, Medium-
Low’ (MH, MH, ML, ML) both share the same sum value and thus map to an identical output (a 0.5 degree of 
fulfillment). The 256 rules are generated by using the ‘AND’ operation and are illustrated below: 
Rules #1 
Rules #2 
Rules #3 
Rules #4 

IF (C1 is H) AND (C2 is H) AND (C3 is H) AND (C4 is H) THEN (DF is 1) 
IF (C1 is H) AND (C2 is H) AND (C3 is H) AND (C4 is MH) THEN (DF is 0.92) 
IF (C1 is H) AND (C2 is H) AND (C3 is H) AND (C4 is ML) THEN (DF is 0.83) 
IF (C1 is H) AND (C2 is H) AND (C3 is H) AND (C4 is L) THEN (DF is 0.75) 
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Rules #5 
Rules #6 
Rules #7 
Rules #8 

IF (C1 is H) AND (C2 is H) AND (C3 is MH) AND (C4 is H) THEN (DF is 0.92) 
IF (C1 is H) AND (C2 is H) AND (C3 is MH) AND (C4 is MH) THEN (DF is 0.83) 
IF (C1 is H) AND (C2 is H) AND (C3 is MH) AND (C4 is ML) THEN (DF is 0.75) 
IF (C1 is H) AND (C2 is H) AND (C3 is MH) AND (C4 is L) THEN (DF is 0.67) 

…  
Rules #249 
Rules #250 
Rules #251 
Rules #252 
Rules #253 
Rules #254 
Rules #255 
Rules #256 

IF (C1 is L) AND (C2 is L) AND (C3 is ML) AND (C4 is H) THEN (DF is 0.33) 
IF (C1 is L) AND (C2 is L) AND (C3 is ML) AND (C4 is MH) THEN (DF is 0.25) 
IF (C1 is L) AND (C2 is L) AND (C3 is ML) AND (C4 is ML) THEN (DF is 0.17) 
IF (C1 is L) AND (C2 is L) AND (C3 is ML) AND (C4 is L) THEN (DF is 0.08) 
IF (C1 is L) AND (C2 is L) AND (C3 is L) AND (C4 is H) THEN (DF is 0.25) 
IF (C1 is L) AND (C2 is L) AND (C3 is L) AND (C4 is MH) THEN (DF is 0.17) 
IF (C1 is L) AND (C2 is L) AND (C3 is L) AND (C4 is ML) THEN (DF is 0.08) 
IF (C1 is L) AND (C2 is L) AND (C3 is L) AND (C4 is L) THEN (DF is 0) 

 
3. Selecting the defuzzification method 

Several defuzzification methods, maxima and derivatives, distribution and derivatives, and area methods are the 
often-used defuzzification methodologies [30]. This study employs distribution methods and derivatives, known 
as the centroid or center of gravity (COG) method for defuzzification. It can be calculated using Equation (3). 
 

𝐶𝐶𝐶𝐶𝐶𝐶Ã(𝑥𝑥) =
∑ 𝑥𝑥 ∙ µ Ã(𝑥𝑥)𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

∑ µ Ã(𝑥𝑥)𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

 
where COGÃ(x) represents fuzzy A’s centroid in crisp value, and µÃ(x) is the membership degree of x. 
 
For demonstration purposes, this fuzzy model is tested on twelve risks across seven categories (Table 2). These 
risks are selected for their diverse characteristics: natural disasters are inherently unpredictable, while contractors 
can manage construction operational risks. In contrast, financial and regulatory risks are primarily controlled by 
external parties (banks and government), leaving construction stakeholders with limited influence. 
 

Table 2. Selected Risks with Different Characteristic 
Category Risk 

Site condition Geological conditions (R1) 

Natural disaster Earthquakes, volcanic eruptions, and tsunamis (R2) 
Landslides (R3) 

Human-caused disaster 
Robbery and theft on-site (R4) 
War, civil war, and terrorism (R5) 
Accidental damage (R6) 

Construction operational 
Material or equipment availability (R7) 
Material waste by workers (R8) 
Third-party property damage (R9) 

Competition Competition from similar projects (R10) 
Financial Funding shortages and loan cancellations (R11) 
Law and regulation Changes in laws and government regulations (R12) 

 
Results and Discussion 
 
A survey is conducted to measure risk insurability by evaluating the fulfillment of insurable risk criteria from the 
contractor’s and insurer’s perspectives. The survey involves 31 contractors and 15 insurer respondents with over five 
years of experience. Their responses are normalized by dividing the number of agreements (‘yes’ responses) by the 
total number of respondents in each group (please see Table 3). The analysis highlights significant differences in risk 
perception between the two groups. For example, 70% of contractor respondents consider ‘earthquakes, volcanic 
eruptions, and tsunamis’ to fulfill the accidental event criterion (C1) and 20% consider them to exhibit quantifiable 
damage (C2). However, less than 10% assess these risks as frequently occurring (C3) or having identifiable causes 
(C4). Conversely, over 70% of insurers evaluate ‘landslides’ as fulfilling three criteria (C1, C2, and C4), with 
approximately 40% labeling it as frequently occurring (C3). This finding illustrates that the risk might get different 
insurability perceptions from each group. 
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Table 3. Respondents Frequency of Risks against Insurable Risk Criteria 

Risk 
Relative Frequencies 

Contractors Insurers 
C1 C2 C3 C4 C1 C2 C3 C4 

Geological conditions (R1) 0.42 0.32 0.13 0.26 0.53 0.73 0.60 0.53 
Earthquakes, volcanic eruptions, and tsunamis (R2) 0.71 0.19 0.06 0.10 0.80 0.73 0.40 0.73 
Landslides (R3) 0.74 0.19 0.10 0.10 0.73 0.73 0.73 0.67 
Robbery and theft on-site (R4) 0.45 0.26 0.29 0.19 0.67 0.60 0.73 0.60 
War, civil war, and terrorism (R5) 0.65 0.10 0.10 0.10 0.33 0.33 0.13 0.27 
Accidental damage (R6) 0.71 0.32 0.10 0.23 0.73 0.73 0.47 0.53 
Material or equipment availability (R7) 0.10 0.42 0.26 0.48 0.07 0.07 0.27 0.27 
Material waste by workers (R8) 0.10 0.29 0.52 0.19 0.27 0.13 0.00 0.27 
Third-party property damage (R9) 0.52 0.42 0.16 0.19 0.80 0.73 0.67 0.67 
Competition from similar projects (R10) 0.10 0.23 0.48 0.19 0.07 0.00 0.13 0.13 
Funding shortages and loan cancellations (R11) 0.16 0.16 0.26 0.26 0.20 0.13 0.27 0.13 
Changes in laws and government regulations (R12) 0.32 0.19 0.10 0.23 0.13 0.13 0.20 0.13 

 
Input Transformation 
 
The first step of applying FIS is transforming the input into membership degree through fuzzification, as described 
in Table 3. For example, the ‘landslides’  frequency reported by contractors at C1 is 0.74. Based on Figure 2, the 
value of 0.74 belongs to the Medium-High and High categories. Thus, the membership degrees for Low and Medium-
Low are 0, while those for Medium-High and High are calculated using Equations (1) and (2). 
For Low category,  µ 𝐿𝐿(𝑥𝑥𝑅𝑅3−𝐶𝐶1) = 𝑥𝑥𝑅𝑅3−𝐶𝐶1 ≥ 0.33 =  0 

µ 𝐿𝐿(𝑥𝑥𝑅𝑅3−𝐶𝐶1) = 0.74 ≥ 0.33 = 0 
For Medium-Low category, µ 𝑀𝑀𝐿𝐿(𝑥𝑥𝑅𝑅3−𝐶𝐶1) = 𝑥𝑥𝑅𝑅3−𝐶𝐶1 ≥ 0.67 =  0 

µ 𝐿𝐿(𝑥𝑥𝑅𝑅3−𝐶𝐶1) = 0.74 ≥ 0.67 =  0 
For Medium-High category µ 𝑀𝑀𝑀𝑀(𝑥𝑥𝑅𝑅3−𝐶𝐶1) = 𝑈𝑈𝑀𝑀𝑀𝑀−𝑥𝑥𝑅𝑅3−𝐶𝐶1

𝑈𝑈𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀
=  1−0.74

1−0.67
= 0.77 

For High category,  µ 𝑀𝑀(𝑥𝑥𝑅𝑅3−𝐶𝐶1) = 𝑥𝑥𝑅𝑅3−𝐶𝐶1−𝐿𝐿𝑀𝑀
𝑀𝑀𝑀𝑀−1−𝐿𝐿𝑀𝑀

=  0.74−0.67
0.8−0.67

= 0.56 
 
In summary, the membership degree of C1 is 0 for Low, 0 for Medium-Low, 0.76 for Medium-High, and 0.59 for 
High (0.00, 0.00, 0.77, 0.56). By applying the same steps for other inputs (C2, C3, and C4), the membership degree 
for ‘landslides’ from the contractors’ perspective is [C1: (0.00, 0.00, 0.77, 0.56); C2: (1.00, 0.58, 0.00, 0.00); C3: 
(1.00, 0.29, 0.00, 0.00); C4: (1.00, 0.29, 0.00, 0.00)]. Table 4 shows the calculated membership degrees based on the 
relative frequencies of contractors and insurers, which are then used as input. 
 

Table 4. Membership Degree by Contractors and Insurers for Inputs 
Code C1 C2 C3 C4 

Membership Degree by Contractors (L, ML, MH, H) 
R1 (0.00, 0.74, 0.26, 0.00) (0.08, 0.97, 0.00, 0.00) (1.00, 0.39, 0.00, 0.00) (0.26, 0.77, 0.00, 0.00) 
R2 (0.00, 0.00, 0.87, 0.32) (1.00, 0.58, 0.00, 0.00) (1.00, 0.19, 0.00, 0.00) (0.10, 0.29, 0.00, 0.00) 
R3 (0.00, 0.00, 0.77, 0.56) (1.00, 0.58, 0.00, 0.00) (1.00, 0.29, 0.00, 0.00) (0.10, 0.29, 0.00, 0.00) 
R4 (0.00, 0.65, 0.35, 0.00) (0.56, 0.77, 0.00, 0.00) (0.32, 0.87, 0.00, 0.00) (0.19, 0.58, 0.00, 0.00) 
R5 (0.00, 0.06, 0.94, 0.00) (1.00, 0.29, 0.00, 0.00) (1.00, 0.29, 0.00, 0.00) (0.10, 0.29, 0.00, 0.00) 
R6 (0.00, 0.00, 0.87, 0.32) (0.08, 0.97, 0.00, 0.00) (1.00, 0.29, 0.00, 0.00) (0.23, 0.68, 0.00, 0.00) 
R7 (1.00, 0.29, 0.00, 0.00) (0.00, 0.74, 0.26, 0.00) (0.56, 0.77, 0.00, 0.00) (0.48, 0.55, 0.45, 0.32) 
R8 (1.00, 0.29, 0.00, 0.00) (0.32, 0.87, 0.00, 0.00) (0.00, 0.45, 0.55, 0.00) (0.19, 0.58, 0.00, 0.00) 
R9 (0.00, 0.45, 0.55, 0.00) (0.00, 0.74, 0.26, 0.00) (1.00, 0.48, 0.00, 0.00) (0.19, 0.58, 0.00, 0.00) 

R10 (1.00, 0.29, 0.00, 0.00) (0.81, 0.68, 0.00, 0.00) (0.00, 0.55, 0.45, 0.00) (0.19, 0.58, 0.00, 0.00) 
Membership Degree by Insurers (L, ML, MH, H) 

R1 (0.00, 0.40, 0.60, 0.00) (0.00, 0.00, 0.80, 0.50) (0.00, 0.20, 0.80, 0.00) (0.00, 0.40, 0.60, 0.00) 
R2 (0.00, 0.00, 0.60, 1.00) (0.00, 0.00, 0.80, 0.50) (0.00, 0.80, 0.20, 0.00) (0.00, 0.00, 0.80, 0.50) 
R3 (0.00, 0.00, 0.80, 0.50) (0.00, 0.00, 0.80, 0.50) (0.00, 0.00, 0.80, 0.50) (0.00, 0.00, 1.00, 0.00) 
R4 (0.00, 0.00, 1.00, 0.00) (0.00, 0.20, 0.80, 0.00) (0.00, 0.00, 0.80, 0.50) (0.00, 0.20, 0.80, 0.00) 
R5 (0.00, 1.00, 0.00, 0.00) (0.00, 1.00, 0.00, 0.00) (1.00, 0.40, 0.00, 0.00) (0.50, 0.80, 0.00, 0.00) 
R6 (0.00, 0.00, 0.80, 0.50) (0.00, 0.00, 0.80, 0.50) (0.00, 0.60, 0.40, 0.00) (0.00, 0.40, 0.60, 0.00) 
R7 (1.00, 0.20, 0.00, 0.00) (1.00, 0.20, 0.00, 0.00) (0.50, 0.80, 0.00, 0.00) (0.50, 0.80, 0.00, 0.00) 
R8 (0.50, 0.80, 0.00, 0.00) (1.00, 0.40, 0.00, 0.00) (1.00, 0.00, 0.00, 0.00) (0.50, 0.80, 0.00, 0.00) 
R9 (0.00, 0.00, 0.60, 1.00) (0.00, 0.00, 0.80, 0.50) (0.00, 0.00, 1.00, 0.00) (0.00, 0.00, 1.00, 0.00) 

R10 (1.00, 0.20, 0.00, 0.00) (1.00, 0.00, 0.00, 0.00) (1.00, 0.40, 0.00, 0.00) (1.00, 0.40, 0.00, 0.00) 
R11 (1.00, 0.60, 0.00, 0.00) (1.00, 0.40, 0.00, 0.00) (0.50, 0.80, 0.00, 0.00) (1.00, 0.40, 0.00, 0.00) 
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Fuzzy Rules Applications 
 
The regulated 256 fuzzy rules cover all the possibilities of input combinations. For example, based on the insurers’ 
input, ‘landslide’ has inputs of [C1, C2, C3, C4] = [(0.00, 0.00, 0.80, 0.50); (0.00, 0.00, 0.80, 0.50); (0.00, 0.00, 0.80, 
0.50); (0.00, 0.00, 1.00, 0.00)]. These inputs are then loaded to all of the fuzzy rules. Since the fuzzy rules only use 
the ‘AND’ operation, each combination’s minimum (lowest) membership is selected. This step is described in Table 
5. 

Table 5. Combination and Fuzzy Rule Used for R4 based on Insurers Perspective 
Rule No. Input Combination C1 C2 C3 C4 Calculated Membership (MIN µ) Output (DF) 

1 [H, H, H, H] 0.50 0.50 0.50 0.00 0.00 1.00 
2 [H, H, H, MH] 0.50 0.50 0.50 1.00 0.50 0.92 
3 [H, H, H, ML] 0.50 0.50 0.50 0.00 0.00 0.83 

… … … … … … … … 
85 [MH, MH, MH, H] 0.80 0.80 0.80 0.00 0.00 0.75 
86 [MH, MH, MH, MH] 0.80 0.80 0.80 1.00 0.80 0.67 
… … … … … … … … 

254 [L, L, L, MH] 0.00 0.00 0.00 1.00 0.00 0.17 
255 [L, L, L, ML] 0.00 0.00 0.00 0.00 0.00 0.08 
256 [L, L, L, L] 0.00 0.00 0.00 0.00 0.00 0.00 

 
Defuzzification 
 
The crisp value of applied fuzzy rules is obtained through defuzzification. This study applies the COG or centroid 
method to transform the fuzzy number into a crisp value that describes the degree of fulfillment of insurable risk 
criteria. The calculation is performed using Equation (3) as follows. 

𝐶𝐶𝐶𝐶𝐶𝐶µ �𝐷𝐷𝐷𝐷𝑅𝑅4�
=
∑ 𝐷𝐷𝐷𝐷𝑅𝑅4 ∙ µ (𝐷𝐷𝐷𝐷𝑅𝑅4)
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

∑ µ (𝐷𝐷𝐷𝐷𝑅𝑅4)
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

 

𝐶𝐶𝐶𝐶𝐶𝐶µ �𝐷𝐷𝐷𝐷𝑅𝑅4�
=

(0 × 1) + (0.5 × 0.92) + (0 × 0.83) + ⋯+ (0 × 0.083) + (0 × 0)
(0 + 0.5 + 0 +⋯+ 0 + 0)  

𝐶𝐶𝐶𝐶𝐶𝐶µ �𝐷𝐷𝐷𝐷𝑅𝑅4�
=  

3.3667
4.3

≈ 0.77 
 
The degree of insurable risk criteria fulfillment (DF) illustrates the insurability measurement of the identified risk. 
The result of DF is presented in Table 6. The fulfillment degree among insurers ranges from 0.04 to 0.77. Contractors’ 
evaluations of the risks yield a fulfillment degree ranging from 0.19 to 0.33, indicating a narrower range compared 
to insurers. This variation is understandable, as insurers more frequently assess the risk and its insurability than 
contractors. The narrow range of fulfillment scores reflects contractors’ hesitancy or uncertainty in evaluating the 
suitability of risks against insurable risk criteria. Several risks are considered more insurable by contractors showing 
higher DFs than insurers (e.g., ‘competition from similar projects’). The difference between DF by contractor and 
insurers varies from -0.25 to 0.44, where the minus sign indicates that DF by contractor is higher than insurers and 
vice versa. 
 
Based on Table 6, most risks associated with natural disasters are highly insurable, particularly from the perspective 
of insurers. For instance, ‘earthquakes, volcanic eruptions, tsunamis, and landslides’ score above 0.75 according to 
insurers and 0.32 according to contractors. Natural disaster risks are typically unpredictable, unlike other risks that 
may be managed within the contractor’s control. 
 
The contractor places greater importance on certain risks than the insurer when evaluating the fulfillment of insurable 
risk criteria. These risks include ‘the availability of material or equipment,’ ‘material waste caused by workers,’ and 
‘competition from similar projects.’ Table 3  shows that ‘material or equipment availability’ is determined by 
approximately 93% of insurers as not fulfilling the criteria for accidental events (C1) and quantifiable damage (C2). 
Additionally, about 73% of insurers consider this risk to be infrequent (C3) and with non-identifiable causes (C4). In 
comparison, 42% of contractors deem the risk to fulfill the quantifiable damage (C2), and 48% agree that the risk’s 
cause is identifiable (C4). Similarly, ‘material waste by workers’ is perceived by over 73% of insurers as non-
accidental events, unquantifiable damage, rarely occurring, and having non-identifiable causes. However, around 
52% of contractors consider that ‘material waste by workers’ and ‘actual volume differences from the contract’ 
frequently occur (C3). 
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Furthermore, more than 87% of insurers believe that ‘competition from similar projects’ does not meet the criteria 
for insurable risks, while 48% of contractors agree that the risk frequently occurs (C3). Based on the model’s 
measurement, contractors assign this risk a DF score exceeding 0.29, whereas insurers assign it a DF score of less 
than 0.13, indicating a low level of insurability. 
 
Based on the model’s findings, insurers consider risks associated with contractor control and regulatory factors to 
have limited insurability, for example, ‘material or equipment availability,’ ‘material waste by workers,’ ‘competition 
from similar projects,’ ‘funding shortages and loan cancellations,’ and ‘changes in laws and government regulations.’ 
Regarding risk transfer, assigning risks to the party with the most control over how risks may impact the situation is 
optimal. Since many of these risks can be effectively managed by the contractor, insurers perceive them to have low 
insurability. 
 
Both contractor and insurer respondents seem to share a concurrent perception of ‘war, civil war, and terrorism’ and 
‘funding shortages and loan cancellations.’ Both risks’ DF difference shows a low value of approximately 0.01. 
Notably, based on Table 3, 65% of contractors perceive ‘war, civil war, and terrorism’ as accidental events. 
Approximately 90% of contractors agree that the damage of this risk is unquantifiable, rarely occurs, and has non-
identifiable causes. On the other hand, only 33% of insurers consider this risk an accidental event with quantifiable 
damage. In comparison, more than 73% of insurers deem it to occur rarely and to have non-identifiable causes. 
Similarly, over 74% of contractors and 73% of insurers agree that ‘funding shortages and loan cancellations’ are 
classified as non-accidental events, resulting in unquantifiable damage, rarely occurring, and having non-identifiable 
causes. 
 
A surface model of DF can be generated using two frequency inputs, as shown in Figure 3, with C1 and C2 as 
examples. Since every criterion is assumed to be equally weighted, and the fuzzy rules are generated linearly, as 
mentioned previously, the conducted surface represents the DF value of any two frequency inputs, such as C1 and 
C3, C2 and C4, or C3 and C4. A single input of 1.00 for one criterion results in a maximum DF value of 0.5. The 
second criterion of 0.5 increases the value of DF, resulting in a DF of about 0.6. 

 
Table 6. The Overall Result of Insurability Measurement  

Risk Degree of Fulfillment 
Contractors Insurers Difference 

Geological conditions (R1) 0.28 0.64 0.37 
Earthquakes, volcanic eruptions, and tsunamis (R2) 0.32 0.75 0.43 
Landslides (R3) 0.33 0.77 0.44 
Robbery and theft on-site (R4) 0.29 0.69 0.40 
War, civil war, and terrorism (R5) 0.29 0.28 -0.01 
Accidental damage (R6) 0.32 0.64 0.32 
Material or equipment availability (R7) 0.33 0.13 -0.20 
Material waste by workers (R8) 0.29 0.11 -0.18 
Third-party property damage (R9) 0.33 0.76 0.43 
Competition from similar projects (R10) 0.29 0.04 -0.25 
Funding shortages and loan cancellations (R11) 0.19 0.18 0.00 
Changes in laws and government regulations (R12) 0.26 0.13 -0.13 

 

 
Figure 3. DF Surface According to Two Inputs: C1 and C2 
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Conclusions 
 
The contractor is the party most exposed to risks among the stakeholders involved in a construction project. Managing 
these risks often involves considering the use of construction insurance as a strategy measure. This study develops a 
fuzzy-based model designed to assess the insurability of risks by evaluating their fulfillment against four criteria for 
insurability. The model incorporates the perspectives of both contractors and insurers, converting their assessments 
of risk into linguistic membership degrees through fuzzification. This process involves 256 fuzzy rules resulting in 
13 singleton fuzzy numbers output, which are then defuzzified using the centroid method. 
 
The model is tested on 12 construction risks, each with different characteristics. The fuzzy model’s outcomes reveal 
that, according to insurers, risks associated with unpredictable accidents, such as on-site theft, accidental damage, 
and third-party property damage, exhibit moderately high insurability. Natural disaster risks demonstrate higher 
insurability,  including earthquakes, volcanic eruptions, tsunamis, and landslides. In contrast, risks perceived to be 
within the contractor’s control and related to construction management are evaluated as having low fulfillment of 
insurable criteria. Nevertheless, contractors may perceive these risks as having slightly higher insurability than 
insurers. In real-world construction insurance applications, contractors need to recognize that not all risks they 
encounter are insurable. Understanding the criteria that determine a risk’s insurability is crucial, as it allows 
contractors to implement more advanced risk management strategies to minimize the impact of those risks. 
 
The developed model has limitations, which can pave the way for future research. The model assumes equal 
weighting for each insurable risk criterion, though it is acknowledged that specific criteria may influence insurability 
more than others. Therefore, a thorough examination of the impact of each criterion on risk insurability can enhance 
the robustness of the model. For example, the Analytical Hierarchy Process can be used to determine the weight of 
each insurable risk criterion, which can lead to changes in the assessment of risk insurability. Additionally, 
incorporating dataset creation and applying machine learning techniques can potentially elevate the research to an 
advanced level for the evolution of new insurable risk criteria. Another limitation is that the model does not account 
for the potential existence of necessary and sufficient conditions for determining whether a risk is insurable. Future 
research could focus on investigating this aspect in greater detail. 
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