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 Abstract 
 
It is crucial to address uncertainties in the construction project scheduling 
to mitigate delays. Probabilistic simulation offers a viable alternative 
method. This study examined the relationship between project duration 
and delay risks, as well as identified the most influential activities for 
modest housing projects using Monte Carlo Simulation. The simulation 
analysis, which included 2547 iterations, found that, on average, it took 
87.39 days to complete a 54-type modest house project, with the shortest 
and longest durations being 44 and 149 days, respectively. The sensitivity 
analysis revealed that finishing works, such as painting, doors/windows 
installation, and cleaning, had the highest uncertainty and significantly 
affected the project duration. Additionally, the severity analysis showed 
that wall work was the most impactful activity contributing to delays. 
Based on these analyses, both finishing works and wall work were 
identified as the most critical activities significantly influencing the 
project's completion duration. 
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Introduction 
 
Planning and scheduling are crucial aspects of construction project management [1]. One of the primary planning 
challenges is to create a project schedule while considering risks and uncertainties during its execution [2]. According 
to A. Laufer et al. [3], approximately 80% of projects exhibited a high level of uncertainty at the onset of construction 
activities. Therefore, project managers must consider and analyze the risks associated with the project completion 
duration. It is crucial for a project manager to meticulously develop project duration plans while taking uncertainty 
factors into account [1]. It may consequently mitigate the project completion delay and minimize its impacts on time 
and costs. Thus, the adoption of scheduling methods that accommodate uncertainty factors as part of risk management 
is imperative. 
 
Probabilistic scheduling methods are scheduling approaches that incorporate uncertainty into their analysis [4]. One 
widely utilized probabilistic scheduling method today is Monte Carlo Simulation (MCS) [5].The MCS research was 
initially introduced in 1949 by Ulam and Metropolis. In the 1990s, this technique became fully operational and 
applicable to project managers due to the availability of advanced technology to execute MCS [6]. In the context of 
project scheduling, MCS is used to generate hundreds or thousands of possible output results based on probability 
distributions for costs and schedules for each activity. The simulation results are utilized to create the project's overall 
probability distribution [7]. According to Deshmukh et al. [8] and Tysiak et al. [9], MCS provides results that closely 
approximate real-world durations as observed in the field. MCS is not only more intuitive and accurate but also offers 
extensive flexibility to present other distributions, correlations, and additional conditions. The advantage of the MCS 
method, compared to others, lies in its ability to produce sensitivity values for each activity [10]. Sensitivity Analysis 
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is used to identify which parameters have the most significant impact on the outcome [11]. This analysis is conducted 
to identify key factors and how much influence an input distribution of activities has on the total project output 
variable [11,12]. The higher the sensitivity value of an activity, the greater its potential impact on the entire project 
duration [10,13]. Considering the advantages of the MCS method in generating data, probabilistic scheduling analysis 
of simple building projects in Indonesia using the MCS method presents an intriguing avenue for exploration. 
 
Research on MCS and Sensitivity Analysis has been conducted by Kong et al. [12] and Wali et al. [14]. Both studies 
focused on risk management in scheduling, aiming to explicitly demonstrate the benefits of applying MCS to assess 
scheduling risks, determine project completion durations, and find potential project duration extensions. Kong et al. 
[12] used data from construction and installation projects at the Kunming Changsui International Airport cargo area 
in China. Meanwhile, Wali et al. [14] conducted a questionnaire survey and interviews with 26 civil engineers to 
obtain estimated duration of residential construction projects in Iraq. However, the usage of overall questionnaire 
data without conducting reliability tests on the MCS method may produce results with a high level of error. Thus, 
this study addresses this issue by proposing a new method for checking the data reliability collected from a 
questionnaire. 
 
This study aimed to investigate the relationship between project completion duration and the risk of delays using 
MCS probabilistic scheduling and sensitivity analysis for modest housing projects in Indonesia. It also endeavoured 
to identify the most influential activities affecting the project completion duration. The activity durations used for 
simulation were gathered through a survey questionnaire. A verification method was assigned to check the reliability 
of the respondent data responses. A severity analysis to identify the most influential activities toward project duration 
was also introduced. These two approaches were expected not only to provide a comprehensive understanding of the 
risks and uncertainties involved in project scheduling but also offers a robust framework since any previous MCS 
research did not consider them. 
 
Research Data 
 
Research Object 
 
A modest 54-type house in one of the residential areas in Jepara Regency, Central Java, Indonesia, was used as the 
object of the study. Data associated with the object of the study were obtained through document review, interviews, 
and observations, which are illustrated in Figure 1. 
 

  

     
Figure 1. Research Object 

 
Project Network 
 
The project network was developed based on a literature review of some research on house construction projects and 
clarified by interviewing several construction practitioners. There were 18 activities found as the main activities of 
the modest housing project, as listed in Table 1. 



Risk Analysis of Modest Housing Projects Scheduling using Monte Carlo Simulation 

  
Vol. 26, No. 2, September 2024: pp. 160-172 

162 

Table 1. List of Activities 
No ID Activities References 
1 A Site Preparation (Site clearing, project fencing, bouwplank, etc.) [5,15–19] 
2 B Land Work (Excavation &Fill) [5,16–20] 
3 C Foundation Work [5,15,16,18–20] 
4 D Sanitary Sewer Pipes Installation [5,15,18] 
5 E Footing Work [5,15,16,20] 
6 F Column Work [5,16,19] 
7 G Masonry (Wall) Work [5,15,19,20] 
8 H Plumbing [5,15,16,18,19] 
9 I Window Frames Installation [5,18–20] 
10 J Door Frames Installation [5,18–20] 
11 K Beam Work [5,16,20] 
12 L Roof Frame Work [5,18,19] 
13 M Roof Covering (Tiles) [5,15,17,18,20] 
14 N Electrical/Power Installation [5,15–17,19,20] 
15 O Plastering Work [5,15,17–20] 
16 P Ceiling Work [5,15–20] 
17 Q Flooring [5,15,16,18–20] 
18 R Finishing Work (Painting, varnishing, installation of doors &windows including their accessories, 

cleaning, etc). 
[5,15–20] 

 
According to the literature, among the 18 activities outlined in Table 1, wall, plastering, and finishing work are 
considered critical due to their longer durations compared to other activities [5,15,17–20]. Finishing work encompasses 
multiple stages involving various sub-tasks such as wall painting, wood varnishing, installation of doors and 
windows, and thorough cleaning activities. On the other hand, wall work and plastering work involve handling large 
areas and substantial volumes. These three activities demand meticulous attention to detail, precision, and careful 
execution to achieve the desired final result. Hence, effective time management and comprehensive planning are 
essential to ensure the successful completion of the project. 
 
The 18 activities required to construct the modest housing project were arranged in a network diagram. The diagram 
was then verified by interviewing four kinds of construction practitioners. This step was conducted as validation of 
the network which aligns with the real conditions commonly encountered in modest housing projects. The verified 
network of the eighteen activities is illustrated in Figure 2.  
 

 
Figure 2. Project Network Diagram 

 
There were two different opinions regarding the sequence and relationship activities of wall (G) and beam (K). Some 
practitioners argued that beams, as structural elements, should ideally constructed first before non-structural components 
like brick walls. However, others said that in most single-story modest housing projects in Indonesia, beam is 
typically carried out after the brick walls. This decision aims to minimize project costs, especially related to formwork 
and scaffolding expenses. 
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Survey 
 
The research employed a data collection technique using surveys and questionnaires to gather estimation data from 
26 construction practitioners working in small-scale contractor companies. These respondents included engineers 
(65%), sub-contractors (27%), and forepersons (8%). The majority of respondents (23%) were located in Central 
Java Province, with the remaining distributed across Yogyakarta Special Region (19%), West Java (15%), Riau 
(11%), East Java (8%), West Nusa Tenggara (8%), DKI Jakarta (4%), Bengkulu (4%), Central Sulawesi (4%), and 
North Sulawesi (4%). In terms of experience, 31% respondents had more than ten years of work experience, 27% 
had 1 to 3 years, 15% had 3 to 5 years, and 27% had 5 to 10 years of experience. There were no respondents with 
less than one year of experience. 
 

  

 
Figure 3. Respondent Demographics: A. Respondent’s Domiciles, B. Respondent’s Roles in Construction Industry, C. Respondent’s 

Years of Experience 
 
According to the survey findings, the modest housing projects in the case study range from a minimum completion 
time of 31 days to a maximum of 144 days, with an average duration of 81.69 days. The substantial disparity between 
the minimum, maximum, and average project durations highlights significant variations in perceptions of construction 
timelines among construction practitioners in Indonesia. 
 
Monte Carlo Simulation Process 
 
The MCS process, as depicted in Figure 4, involves several steps. Initially, a random number between one and 26 is 
generated to determine the duration of respondent data for activity A to be used in the simulation. This process is 
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then repeated for activities B through R to determine each activity duration associated with the respondent data. Once 
the durations for all activities have been determined, the project duration is recorded. As there are 26 potential 
durations of the respondent data for each of the 18 activities (activity A to activity R), a significant number of 
iterations, which is equal to 2618 or approximately 2.9 × 1025, is required to ensure each data value has an equal 
chance of being included in the simulation. Figure 5 illustrates the possible combination of the data for 18 activities 
with 26 data responses. Therefore, MCS was assigned to simulate these various conceivable scenarios. Using MCS, 
the number of iterations to run each complete process was stopped when it reached the required sum. MCS analysis 
was conducted using Microsoft Excel software. Random numbers, determining which respondent data should be 
taken into account, were generated by employing the function =RANDBETWEEN([1],[26]) on Microsoft Excel‘s 
sheet or by utilizing the algorithm Int(([26]-[1]+1)*Rnd+[1]) in Microsoft Excel's Visual Basic. 
 

 

 
Figure 4. Flow Chart of Monte Carlo Simulation Process 

 

 
Figure 5. Illustration of the Possible Data Combination 

Visual Basic Application 
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Determination of the Required Number of Iteration 
 
MCS simulation error is depended on its number of iterations [21]. When the standard deviation and absolute error 
are expected to be less than 2%, the MCS then required number of iterations is calculated based on the following 
calculation: 

𝜎𝜎 = �� (𝑥𝑥𝑖𝑖−�̅�𝑥)2𝑘𝑘
𝑖𝑖=1
𝑘𝑘−1

  (1) 
 

𝜀𝜀 = �̅�𝑥
� 1
𝑅𝑅𝑅𝑅�

  (2) 
 

𝑛𝑛 = �3𝜎𝜎
𝜀𝜀
�
2
  (3) 

 
Where 𝜎𝜎 is the standard deviation, 𝑥𝑥𝑖𝑖 is the data value of each population member, �̅�𝑥 is the overall data mean, 𝑘𝑘 is 
the number of data, 𝜀𝜀 is the absolute standard error, 𝑅𝑅𝑅𝑅 is the maximum error value (in this study taken as 2%), and 𝑛𝑛 
is the number of iterations [21,22]. 
 
Examination of Respondent Data Reliability 
 
Probabilistic analysis using MCS generally considers that each respondent's data is valid and reliable to be used in 
the simulation. However, the use of doubtful data will certainly provide an inappropriate result. This research 
examined the reliability of the data. The proposed project duration of each respondent was examined to ensure 
whether it fell within the range of the minimum and maximum values of the MCS results. Any proposed project 
duration dropped outside the range was categorized as unreliable, and the respondent was declared as a doubtful 
respondent. All data given by this respondent was then eliminated and not used for subsequent simulation. This 
process was repeated until the minimum and maximum values of the simulation results covered the entire proposed 
project duration of the respondent. 
 
Statistical analysis found that, from 26 respondents' data, the average project duration was 81.69 days, the standard 
deviation was 32.06, and the absolute standard error was 1.63. Applying these three values (average, standard 
deviation, and absolute error) into equations (1), (2), and (3) obtained the required number of iterations (n) is equal 
to 3465 iterations. 
 

Table 2. Simulation Results 
 1st Sim. 2nd Sim. 

Number of respondent data 26 23 
Number of simulation result data 3465 2547 
Minimum duration values (days) 47 44 
Maximum duration values (days) 146 149 

 
Table 3. Results of Respondent Data Reliability Examination 

No. ID Project Duration 1st Sim. 2nd Sim.  No. ID Project Duration 1st Sim. 2nd Sim. 
1 R1 67 Ok Ok  14 R14 52 Ok Ok 
2 R2 139 Ok Ok  15 R15 125 Ok Ok 
3 R3 80 Ok Ok  16 R16 78 Ok Ok 
4 R4 107 Ok Ok  17 R17 54 Ok Ok 
5 R5 65 Ok Ok  18 R18 133 Ok Ok 
6 R6 76 Ok Ok  19 R19 52 Ok Ok 
7 R7 114 Ok Ok  20 R20 38 Outlier - 
8 R8 49 Ok Ok  21 R21 67 Ok Ok 
9 R9 77 Ok Ok  22 R22 44 Outlier - 

10 R10 31 Outlier -  23 R23 62 Ok Ok 
11 R11 99 Ok Ok  24 R24 80 Ok Ok 
12 R12 87 Ok Ok  25 R25 118 Ok Ok 
13 R13 86 Ok Ok  26 R26 144 Ok Ok 

 
Table 2 presents the maximum and minimum duration given by the MCS analysis, whereas Table 3 displays the 
results of the reliability test. In the first MCS analysis, with 3465 iterations, the given minimum project duration was 
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47 days, and the maximum duration was 146 days. In fact, three proposed project durations did not fall within the 
range of the minimum and maximum durations. These three data were R10, R20, and R22, which provided durations 
of 31, 38, and 44 days, respectively. These durations were smaller than the minimum duration provided by MCS, 
which was 47 days. Therefore, these three data were deemed unreliable and should not be considered in the 
simulation. The simulation was then continued using 23 remaining data. The same statistical analysis was again 
conducted to obtain values of average, standard deviation, and absolute error. Based on the statistical value of the 23 
data, 2547 iterations were required to do the second MCS analysis. The second simulation granted minimum and 
maximum values of 44 days and 149 days, respectively. These results convinced that the 23 data were in the range 
of minimum and maximum values and met the reliability criteria. Table 4 shows the final values of each activity 
duration obtained from the MCS analysis. 
 

Table 4. Final Results of Monte Carlo Simulation 
Activities Mean Min Max 

A 3.39 1 14 
B 4.30 2 7 
C 5.66 2 14 
D 2.78 1 10 
E 5.07 2 14 
F 6.53 3 21 
G 1.10 5 25 
H 2.41 1 7 
I 2.97 1 8 
J 2.79 1 6 
K 7.29 2 21 
L 5.11 2 8 
M 4.52 1 10 
N 4.77 1 14 
O 9.55 3 20 
P 5.56 1 14 
Q 5.91 3 20 
R 8.63 2 25 

Total Duration 87.39 44 149 
 
Figure 6 displays a visual representation of the variation in average duration across different iteration counts. The 
graph illustrates a consistent pattern where an increase in the number of iterations leads to a decrease in the difference 
in average duration. The results depicted in the graph confirm that the MCS analysis of 23 respondent datasets with 
iteration counts of 2547 and 3465 has reached a stable state, with the difference in average duration being less than 
0.5 days or a margin error less than 1%. 
 

 
Figure 6. Delta Average Duration Across Various Iteration Counts 

 
Normality Tests 
 
A series of normality tests were carried out to assess the distribution of data in relation to the independent and 
dependent variables in the regression model [23]. There are more than 40 statistical tests available for examining the 
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normality of a dataset [24]. Some of the well-known tests include the Skewness Kurtosis (SK) test, Jarque Bera (JB) 
test, Shapiro Wilk (SW) test, Lilliefors (LF) test, and Kolmogorov Smirnov (KS) test [25–27]. The selection of the 
normality test is based on the number of data points, as outlined in Table 5. 
 

Table 5. Normality Tests Based on The Number of Data Points [28,29] 

Test Number of Samples 
3 ≤ N ≤ 4 5 ≤ N ≤ 6 7 ≤ N ≤ 9 9 ≤ N ≤ 50 51 ≤ N ≤ 200 201 ≤ N ≤ 2000 2001 ≤ N ≤ 5000 5001 ≤ N 

Skewness Kurtosis    V* V* V** V** V** 
Jarque Bera V** V* V* V* V* V** V** V** 
Shapiro Wilk   V** V** V V   
Lilliefors  V V V V** V V V 
Kolmogorov Smirnov  V V V V* V* V V 

Explanation: 
V = Valid to use 
V* = Valid and a good choice to use 
V** = Valid and the best choice to use 
 
In accordance with Table 5, utilizing a sample size of 2547 data points, the Skewness Kurtosis (SK) and Jarque Bera 
(JB) methods are determined to be the most favorable approaches for testing normality. These two methods are 
subsequently employed as the normality tests, in addition to three others commonly utilized methods: Shapiro Wilk 
(SW), Lilliefors (LF), and Kolmogorov Smirnov (KS). 
 
The SK method employs a Z-test, while the JB, SW, KS, and LF methods utilize the p-value to ascertain whether a 
data sample adheres to a normal distribution [30,31]. According to the SK test, a data sample is deemed normally 
distributed if the values of 𝑍𝑍𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑍𝑍𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠 lie within the range of -1.96 to +1.96 (at a 95% confidence level 
or alpha = 0.05). On the other hand, in the JB, SW, KS, and LF tests, a data sample is identified as normally 
distributed if the p-value is below 0.05 (at a 95% confidence level). The normality tests SW, KS, and LF are executed 
using the SPSS program, while the SK and JB tests are carried out using the following calculations: 

𝑆𝑆𝑅𝑅𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  �6
𝑠𝑠
  (4) 

 

𝑆𝑆𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠 =  �24
𝑠𝑠

  (5) 
 

𝑍𝑍𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑆𝑆
𝑆𝑆𝑆𝑆𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  (6) 
 

𝑍𝑍𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠 =  𝐾𝐾
𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠

  (7) 
 

𝐽𝐽𝐽𝐽 = 𝑠𝑠
6
�𝑆𝑆2 + (𝐾𝐾−3)2

4
�  (8) 

 
Where 𝑆𝑆𝑅𝑅𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the standard error of skewness, 𝑆𝑆𝑅𝑅𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠 is the standard error of kurtosis, 𝑛𝑛 is the number of 
samples, 𝑆𝑆 is the skewness values (obtained from SPSS or using the formula =SKEW() in Microsoft Excel), 𝐾𝐾 is the 
kurtosis values (obtained from SPSS or using the formula =KURT() in Microsoft Excel), and 𝐽𝐽𝐽𝐽 is the values of 
Jarque Bera test result [28,29,32]. 
 

Table 6. Normality Tests Results 
Tests Notation Values Requirements Conclusion 

Skewness Z 10.28 -1.96 <Z < 1.96 NOT OK 
Kurtosis Z 3.48 -1.96 <Z < 1.96 NOT OK 
Jarque Bera p-Value 6E-187 p-Value > 0.05 NOT OK 
Shapiro Wilk p-Value < 0.001 p-Value > 0.05 NOT OK 
Kolmogorov Smirnov & Lilliefors p-Value < 0.001 p-Value > 0.05 NOT OK 

 
Table 6 displays the results of the normality test analysis for the data derived from the MCS results. The table 
indicates that, according to the five normality test methods (SK, JB, SW, KS, and LF), the data from the MCS results 
did not satisfy the criteria for a normal distribution. 
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Probability, Sensitivity, and Severity Analysis 
 
The Monte Carlo simulation effectively produced data suitable for probabilistic analysis. However, as the normality 
test results suggested that the simulation results data are not normally distributed, we proceeded with a Cumulative 
Density Function (CDF) analysis assuming that the data represents a population to calculate the probability of project 
durations. The results of the CDF analysis are depicted in Figure 7. 
 
The accuracy of contractors' project duration estimates directly impacts the level of risk involved in completing the 
project. The optimistic estimate represents a 50% chance of the project being finished within the projected timeframe. 
Conversely, the pessimistic estimate reflects a 5% risk of delay or a 95% likelihood of successfully completing the 
work within the estimated timeframe. The optimistic duration estimate is 86 days, while the pessimistic duration 
estimate is 112 days. 
 
At a 95% confidence level, the fastest possible project duration is 65 days, and the latest acceptable duration is 116 
days, excluding the 2.5% probability range on the extreme ends of the CDF analysis curve. Project durations 
exceeding 116 days or falling below 65 days can be deemed unreasonable. 
 

 
Figure 7. Results of CDF Analysis 

 
The results of the CDF analysis at a 95% confidence level, as depicted in Figure 7, form the basis for conducting 
sensitivity analysis. In this analysis, the total project duration is calculated when a particular activity is completed in 
the shortest or longest timeframe, while other activities maintain their average durations. The magnitude of the 
difference between the potential shortest and longest project durations resulting from an activity reflects the 
uncertainty associated with that activity's impact on the project duration. Equation (9) is used to calculate the 
sensitivity analysis. 

𝑆𝑆𝑛𝑛𝑆𝑆 =  ∆𝑇𝑇
∑ ∆𝑇𝑇𝑖𝑖𝑖𝑖=1

  (9) 
 
Where 𝑆𝑆𝑛𝑛𝑆𝑆 is the Sensitivity Index values, and ∆𝑇𝑇 is the gap between the maximum and the minimum project duration. 
 
The sensitivity analysis results are depicted in  
Figure 8 using a tornado diagram, showcasing the impact of each activity on the project duration. Four activities, 
namely J (door frames installation), I (window frames installation), H (plumbing), and D (sewer pipes installation), 
exhibited a sensitivity index of 0%, indicating that they did not affect the project duration at their minimum or 
maximum values due to their non-critical nature. On the other hand, activity R (finishing work) emerged as the most 
influential, contributing to the highest potential fluctuation in project duration, with a value of 11.7%. Following 
closely, activities G (wall work), K (beam work), and F (column work), demonstrated sensitivity indices of 10.2%, 
9.6%, and 9.1%, respectively, signifying their significant impact on project duration. 
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Figure 8. Activity Sensitivity Index 

 
In reality, the activity with the highest sensitivity index, encompassing the widest range of uncertainty in duration 
affecting project completion, may not always be the most likely cause of project delays. Considering the triangular 
data distribution of each activity as generated by the Monte Carlo simulation, project completion duration should be 
determined not only by the potential gap between the fastest and slowest durations, but also by the most likely 
duration of each activity. Consequently, we introduced a severity index analysis to assess the threat level posed by 
each activity to the project's completion duration. The severity index analysis was calculated using equations (10), 
(11), and (12). 

𝑡𝑡̅ =  ∑ 𝑘𝑘𝑖𝑖𝑠𝑠
𝑖𝑖=1
𝑠𝑠

  (10) 
 

𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑛𝑛𝑆𝑆 × 𝑡𝑡̅  (11) 
 

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑆𝑆
∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖=1 

  (12) 
 
Where 𝑡𝑡̅ is the average duration of each activity, 𝑡𝑡𝑡𝑡 is the duration of each activity, 𝑛𝑛 is the number of data, 𝑆𝑆𝑆𝑆 is 
Severity values, 𝑆𝑆𝑛𝑛𝑆𝑆 is Sensitivity Index values, dan 𝑆𝑆𝑆𝑆𝑆𝑆 is Severity Index values. 
 

Table 7. Severity Analysis Results 

Activity 𝑺𝑺𝑺𝑺𝑺𝑺 �̅�𝒕 𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺 
value rank value rank 

R 11.7% 1 8.59 1.00 14.8% 2 
G 10.2% 2 11.12 1.13 16.6% 1 
K 9.6% 3 7.20 0.69 10.2% 4 
F 9.1% 4 6.47 0.59 8.7% 5 
O 8.6% 5 9.56 0.82 12.2% 3 
Q 8.6% 6 5.87 0.51 7.5% 6 
P 6.6% 7 5.55 0.37 5.4% 7 
N 6.6% 8 4.77 0.31 4.6% 9 
A 6.6% 9 3.38 0.22 3.3% 11 
C 6.1% 10 5.65 0.34 5.1% 8 
E 6.1% 11 5.07 0.31 4.6% 10 
M 4.6% 12 4.55 0.21 3.1% 12 
L 3.0% 13 5.15 0.16 2.3% 13 
B 2.5% 14 4.30 0.11 1.6% 14 
J 0.0% 15 2.78 0.00 0.0% 15 
I 0.0% 16 2.95 0.00 0.0% 16 
H 0.0% 17 2.43 0.00 0.0% 17 
D 0.0% 18 2.77 0.00 0.0% 18 
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In Table 7, the severity index analysis results are presented, illustrating the impact of each activity on the project's 
success. Notably, activity G (wall work) has the highest severity index at 16.6%, making it the most influential 
activity. Surpassing activity R (finishing work), which was previously considered the most critical, these two 
activities interchange ranks based on the sensitivity and severity index calculations. Despite Activity G having a 
smaller uncertainty gap of 20 days compared to Activity R's 23 days, it has a greater potential to impact project 
completion delays. Hence, activity G should be given greater attention than activity R. Similarly, activities O 
(plastering work), K (beam work), and F (column work) occupy the third, fourth, or fifth positions based on sensitivity 
or severity index analysis, necessitating close attention following activities G and R to ensure timely project 
completion. 
 
In this research, sensitivity and severity analysis revealed that finishing work (R) and wall work (G) exhibit the 
highest sensitivity and severity index values. These findings align with a study by Wali et al. [14], which conducted 
a sensitivity analysis on a house construction project in Iraq. Their study highlighted that ceramic wall tiling had the 
most significant impact on project duration. Although wall finishing methods differ between Iraq, where ceramic 
tiling is common, and Indonesia, where paint is typically used, both are integral to architectural work and significantly 
impact project schedules.  
 
The study’s findings are supported by other research, as noted in the paragraph below Table 1. Six other studies have 
highlighted finishing work and wall work as primary focuses due to their relatively longer compared to other 
activities. Finishing work involves numerous stages, including wall painting, wood varnishing, installation of doors 
and windows along with all accessories, cleaning activities, and more. The complexity and variety of these tasks 
contribute to their unpredictability. Wall work, which encompasses large areas and substantial volumes, also requires 
meticulous attention to detail and precision to achieve the desired outcomes.  
 
Six additional studies have emphasized the importance of focusing on finishing work and wall work due to their 
longer duration compared to other activities [5,15,17–20]. Finishing work involves several stages, such as wall 
painting, wood varnishing, and installation of doors and windows, as well as the associated cleaning activities. The 
complexity and diversity of these tasks contribute to their unpredictability. Wall work, which involves large areas 
and significant volumes, also requires meticulous attention to detail and precision to achieve the desired results. 
Moreover, both finishing and wall work require a substantial labour force. The larger the workforce, the higher the 
potential for variability and uncertainty due to coordination challenges, differences in skill levels, and fluctuations in 
productivity. This increased labour intensity inherently elevates the level of risk. 
 
Conclusions 
 
The study effectively performed a reliability test on the data generated from the Monte Carlo Simulation (MCS). 
This involved comparing the project duration produced by 3465 MCS analyses with the proposed project duration 
from respondent data. The analysis identified three invalid respondents’ data that were unsuitable for MCS data 
generation. 
 
The findings of the MCS Analysis revealed that small-scale housing projects in Indonesia exhibit a relatively high 
degree of uncertainty. The expected duration with a 50% risk of project delay is 86 days, while the worst-case scenario 
with a 5% risk of delay is 112 days. The variation between the best and worst-case scenarios represents a 30% 
potential delay in the project completion. 
 
The sensitivity analysis results indicate that finishing work is the most uncertain activity, with a sensitivity index of 
11.7%. Any inaccuracies in managing the finishing activity could potentially cause delays, impacting the overall 
project completion time. However, based on the distribution of data from the MCS analysis, the severity test reveals 
that wall work has the most significant influence on project completion. Furthermore, both sensitivity and severity 
analyses highlight the importance of paying attention to plastering, beams, and columns, which are the third, fourth, 
and fifth most critical activities in avoiding project completion delays. Interestingly, activities with the widest 
potential gap between the fastest and slowest completion times are not always the ones that demand the most attention 
to prevent project delays.  
 
The study primarily employed Monte Carlo Simulation for analyzing project completion durations. However, it’s 
important to note that Monte Carlo Simulation has a broader application beyond scheduling. This method is effective 
in evaluating risks from various perspectives, including costs, human resource allocations, and even construction 
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quality. Furthermore, there is significant potential for further research and development of Monte Carlo methodologies, 
especially in their application to project cost management. This is essential to pursue, as cost management is a critical 
aspect and a primary focus in project management and risk management within the construction industry. 
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