Land Subsidence Potential Detection in Yogyakarta International Airport using Sentinel-1 Insar Data


  • Bondan Galih Dewanto Center for Disaster StudiesUniversitas Gadjah MadaYogyakarta
  • Yanuar Haryanto Jenderal Soedirman University
  • Sanidhya Nika Purnomo Department of Hydraulic and Ocean Engineering National Cheng Kung University Tainan



civil engineering, geological engineering, hydraulic engineering


On January 27, 2017, the Indonesian Government started building a new international airport in Yogyakarta Province, named Yogyakarta International Airport (YIA) to replace Adisucipto International Airport. YIA is located near the beach, which means that an awareness of natural disasters, such as coastal flooding, is essential. One of the causes of sea water flooding is land subsidence phenomenon. This land subsidence phenomenon can be monitored by using Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data. To monitor the crustal deformation, the data used in this research are from years 2016-2019. The data were processed through LiCSBAS software which is published by the COMET in the UK. In the processing scheme, interferograms with many unwrapping errors are detected and removed via loop closure. Reliable time series and velocities are extracted using several noise indices, with the help of masking. The results show the subsidence phenomenon in the YIA area (up to 25 mm).


Agram, P., Jolivet, R., and Simons, M. Generic InSAR Analysis Toolbox (GIAnT)—User Guide. Available online: (accessed on 27 November 2019).

Atzori, S., Hunstad, I., Chini, M., Salvi, S., Tolomei, C., Bignami, C., Stramondo, S., Trasatti, E., Antonioli, A., and Boschi, E. (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophysical Research Letters, 36.

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens., 40, 2375–2383. DOI: 10.1109/TGRS.2002.803792.

BNPB. (2013). Indeks Risiko Bencana Indonesia. Direktorat Pengurangan Risiko Bencana Deputi Bidang Pencegahan dan Kesiapsiagaan. Jakarta.

Chaussard, E., Wdowinski, S., Cabral-Cano, E., and Amelung, F. (2014). Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sensing of Environment, 140, 94–106.

Chen, M., Tomás, R., Li, Z., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J., and Gong, X. (2016). Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry. Remote Sensing, 8, 468.

Da Lio, C. and Tosi, L. (2018). Land subsidence in the Friuli Venezia Giulia coastal plain, Italy: 1992–2010 results from SAR-based interferometry. Science of The Total Environment, 633, 752–764.

Evans, N. (2003), Managing airports: an international perspective, by Anne Graham. Butterworth Heinemann, Oxford, 2001. x + 240 pp. ISBN 0‐7506‐4823‐6. Int. J. Tourism Res., 5: 154-155. doi:10.1002/jtr.407.

Fauzi, Y., Hartono, Brotopuspito, K.S., and Kongko, W. (2019). Use of Small Format Aerial Photograph for Environmental Vulnerability Identification of Tsunami Disaster at Yogyakarta International Airport (YIA). Geomatika, 25, 63-72.

Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., and Meilano, I. (2014). Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008-2010. Earth and Planetary Science Letters, 401, 159–171.

Hooper, A.J., Bekaert, D., Spaans, K., and Arikan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1–13.

Ishitsuka, K., Tsuji, T., Matsuoka, T., Nishijima, J., and Fujimitsu, Y. (2016). Heterogeneous surface displacement pattern at the Hatchobaru geothermal field inferred from SAR interferometry time-series. International Journal of Applied Earth Observation and Geoinformation, 44, 95–103. doi: 10.1016/j.jag.2015.07.006.

Jarach, D. (2004). Future scenarios for the European Airline industry: a marketing-based perspective. In Journal of Air Transportation, Volume 9, Number 2:23-39;

Kongko, W. and Hidayat, R. (2014). Earthquake-Tsunami in South Jogjakarta Indonesia: Potential, Simulation Models, and Related Mitigation Efforts. IOSR Journal of Applied Geology and Geophysics, 2(3), 18–22. doi: 10.9790/0990-0231822.

Koulali, A., McClusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., and Wijanarto, A. B. (2017). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 458, 69–79.

Lanari, R., Casu, F., Manzo, M., and Lundgren, P. (2007). Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sens. Environ., 109, 20–28. DOI: 10.1016/j.rse.2006.12.003.

Liu, G., Luo, X., Chen, Q., Huang, D., and Ding, X. (2008). Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors, 8(8). 4725-4741. doi: 10.3390/s8084725.

Manunta, M., Marsella, M., Zeni, G., Sciotti, M., Atzori, S., and Lanari, R. (2008). Two-scale surface deformation analysis using the SBAS-DInSAR technique: A case study of the city of Rome, Italy. International Journal of Remote Sensing, 29, 1665–1684. 01431160701395278.

Morishita, Y., Lazecky, M., Wright, T.J., Weiss, J.R., and Elliott, J.R. (2020). LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor. Remote Sensing, 12, 424. doi: 10.3390/rs12030424.

Ng, A.H.M., Ge, L., Li, X., Abidin, H.Z., Andreas, H., and Zhang, K. (2012). Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation, 18, 232–242.

Radhi, A.A.B.M. (2017). Monitoring Land Subsidence of Airport using InSAR Timeseries Techniques with Atmospheric and Orbital Error Corrections. Thesis, Universiti Teknologi Malaysia.

Scheiber, R. and Moreira, A. (2000) . Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens., 38, 2179–2191. DOI: 10.1109/36.868876.

Schmidt, D.A. and Bürgmann, R. (2003). Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108, 1–13.

Xu, B., Feng, G., Li, Z.-W., Wang, Q., Wang, C., and Xie, R. (2016). Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China. Remote Sensing, 8, 652. doi: 10.3390/rs8080652.

Yu, C., Penna, N. T., and Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos., 122, 2008–2025, DOI: 10.1002/2016JD025753.

Yu, C., Li, Z., Penna, N.T., and Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123, 9202–9222. 2017JB015305.

Zeni, G., Bonano, M., Casu, F., Manunta, M., Manzo, M., Marsella, M., Pepe, A., and Lanari, R. (2011). Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy. Journal of Geophysics and Engineering, 8, S1–S12. doi: 10.1088/1742-2132/8/3/S01.

Zhao, F., Mallorqui, J., Iglesias, R., Gili, J., and Corominas, J. (2018). Landslide Monitoring Using Multi-Temporal SAR Interferometry with Advanced Persistent Scatterers Identification Methods and Super High-Spatial Resolution TerraSAR-X Images. Remote Sensing, 10, 921. doi: 10.3390/rs10060921.ASCE/SEI 41-13.




How to Cite

Dewanto, B. G., Haryanto, Y., & Purnomo, S. N. (2021). Land Subsidence Potential Detection in Yogyakarta International Airport using Sentinel-1 Insar Data. Civil Engineering Dimension, 23(2), 91-99.

Most read articles by the same author(s)