The Using of GIS to Delineate the Liquefaction Susceptibility Zones at Yogyakarta International Airport

Authors

  • Nicholas Hartono Universitas Gadjah Mada, PT Witteveen+Bos Indonesia
  • Teuku Faisal Fathani Universitas Gadjah Mada

DOI:

https://doi.org/10.9744/ced.24.1.62-70

Keywords:

Earthquake, liquefaction severity index, QGIS

Abstract

Spatial analysis is performed to delineate liquefaction susceptibility zones at Yogyakarta International Airport(YIA). The low to medium cohesionless soil consistency is predominantly observed on the upper subsoil. A shallow groundwater level and low fines content have also enlarged the likelihood of earthquake-induced liquefaction. An SPT based liquefaction triggering procedure is adopted in this study to indicate the Factor of Safety (FoS) whereas the Liquefaction Severity Index (LSI) is used to measure the severity of liquefaction by presuming its manifestation. Inverse Distance Weighted (IDW) interpolation in QGIS is chosen to produce a map with 50 m × 50 m grid size. The analysis results show the YIA’s area is prone to undergo liquefaction at various depths. However, thin liquefied layers may not generate sufficient artesian flow pressure to eject water or sand. The LSI analysis concludes that YIA area is categorized as a non-liquefied to moderate severity where the West side is the governing area

References

Ministry of Energy and Mineral Resources. Atlas Zona Kerentanan Likuefaksi Indonesia [Internet]. [cited 2021 Oct 23]. Available from: www.esdm.go.id

Sonmez H, Gokceoglu C. A liquefaction severity index suggested for engineering practice. Environ Geol. 2005 Jun;48(1):81–91.

Hutabarat D, Bray J. Effective stress analysis of liquefiable site in Christchurch to discern the characteristics of sediment ejecta. 2019.

Ishihara K. Stability of natural deposits during earthquakes. In: 11th International Conference on Soil Mechanics and Foundation Engineering (San Francisco). 1985.

Boulanger RW, Idriss IM. Soil Liquefaction During Earthquakes. Department of Civil and Environmental Engineering, University of California, Davis, CA; 2014.

Seed HB, Idriss IM. A Simplified Procedure For Evaluating Soil Liquefaction Potential. J Soil Mech Found Div. 97(9):1249–73.

Abueladas ARA, Niemi TM, Al-Zoubi A, Tibor G, Kanari M, Ben-Avraham Z. Liquefaction susceptibility maps for the Aqaba–Elat region with projections of future hazards with sea-level rise. Q J Eng Geol Hydrogeol. 2021 May;54(2):qjegh2020-039.

Htet WP, Thant M, Arini D. Probability of liquefaction hazard map for Yangon City, Myanmar. In Bandung, Indonesia; 2018 [cited 2022 Apr 12]. p. 020027. Available from: http://aip.scitation.org/doi/abs/10.1063/1.5047312

Mhaske SY, Choudhury D. GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events. J Appl Geophys. 2010 Mar;70(3):216–25.

Sithara SK, Surya S, Parveen S, Damiyan LM, Mohan V, Siddik AM, et al. Liquefaction Susceptibility Mapping of Kollam Coastal Stretch, Kerala, Considering Geotechnical Parameters. In: Latha Gali M, Raghuveer Rao P, editors. Geohazards [Internet]. Singapore: Springer Singapore; 2021 [cited 2022 Apr 12]. p. 471–80. (Lecture Notes in Civil Engineering; vol. 86). Available from: http://link.springer.com/10.1007/978-981-15-6233-4_33

Hartono N. Pemetaan Potensi Likuefaksi dan Optimasi Perbaikan Tanah dengan Metode Stone Column di Kawasan Yogyakarta International Airport. Department of Civil and Environmental Engineering, Universitas Gadjah Mada; 2021.

Setiaji RR, Hakim AM, Adinda FH, Abuhuroyroh KM. Dynamic Compaction at New Yogyakarta International Airport for Liquefaction Mitigation. In: 22nd Annual Indonesian National Conference on Geotechnical Engineering. Jakarta; 2018.

Badan Perencanaan & Pembangunan Daerah DIY. Geological map of DIY [Internet]. [cited 2021 Oct 20]. Available from: bappeda.jogjaprov.go.id

PT. Nur Straits Engineering (NSE). Sub Surface Exploration Log ASTM D1586-11. 2017.

PT. Promisco Sinergi Indonesia. Laporan Faktual Penyelidikan Tanah Lokasi Air Side Proyek Pembangunan Bandara Internasional Yogyakarta. 2018.

Terzaghi K, Peck RB, Mesri G. Soil mechanics in engineering practice. 3rd ed. New York: Wiley; 1996. 549 p.

Yogatama B, Adi Tirta B. Python Application I Geotechnical Engineering Practices. 2021.

Badan Standardisasi Nasional. SNI 8460:2017 tentang persyaratan perancangan geoteknik. 2017.

Badan Standardisasi Nasional. SNI 1726:2019 tentang Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung. 2019.

Tim Pusat Studi Gempa Nasional. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Jakarta: Pusat Penelitian dan Pengembangan Perumahan dan Permukiman Badan Penelitian dan Pengembangan Kementerian PUPR; 2017.

OCDI. Technical Standards for Port and Harbour Facilities in Japan. Japan; 2002.

Day RW. Geotechnical earthquake engineering handbook: with the 2012 International building code. Second edition. New York: McGraw-Hill; 2012. 1 p.

NCEER. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. In: Technical Report NCEER-97-0022. 1997.

Skempton AW. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. Géotechnique. 1986 Sep;36(3):425–47.

Downloads

Published

2022-05-13

How to Cite

Hartono, N., & Fathani, T. F. . (2022). The Using of GIS to Delineate the Liquefaction Susceptibility Zones at Yogyakarta International Airport. Civil Engineering Dimension, 24(1), 62-70. https://doi.org/10.9744/ced.24.1.62-70

Issue

Section

Articles