The Relationship between Hydro-Agricultural Drought in the Corong River Basin: A Causal Time Series Regression Model

Authors

  • Nur Azizah Affandy Sepuluh Nopember Institute of Technology
  • Data Iranata Sepuluh Nopember Institute of Technology
  • Nadjadji Anwar Sepuluh Nopember Institute of Technology
  • Mahendra Andiek Maulana Sepuluh Nopember Institute of Technology
  • Wasis Wardoyo Sepuluh Nopember Institute of Technology
  • Dedy Dwi Prastyo Sepuluh Nopember Institute of Technology
  • Bangun Muljo Sukojo Sepuluh Nopember Institute of Technology

DOI:

https://doi.org/10.9744/ced.26.2.173-190

Keywords:

Drought, hydrological drought, normalized difference drought index, causal time series regression

Abstract

This research explores the relationship between hydrological drought and agricultural drought in the Corong River Basin, focusing on the Gondang Reservoir Irrigation Area, Indonesia. By employing a Causal Time Series Regression Model, the study uncovers that agricultural drought twelve months prior has a significant impact on current agricultural drought and is influenced by current hydrological drought. Time series regression analysis reveals that 45.86% of agricultural drought is influenced by hydrological drought, with 54.14% influenced by other factors besides rainfall. Further research is needed to investigate these additional factors. These findings have practical implications, serving as a valuable index for assessing drought severity and planning mitigation actions, especially in the irrigation areas of interest. They emphasize the importance of effective irrigation management, appropriate cropping patterns, and a comprehensive understanding of the complex characteristics of drought in agricultural regions through comprehensive monitoring efforts in agricultural drought mitigation.

Author Biographies

Data Iranata, Sepuluh Nopember Institute of Technology

He is the promoter of our dissertation, he provided input and ideas for this research to be conducted. Department of Civil Engineering, Faculty of Civil, Planning, And Geo-Engineering, Sepuluh Nopember Institute of Technology, INDONESIA

Nadjadji Anwar, Sepuluh Nopember Institute of Technology

He was the primary supervisor for the doctoral study and the preparation of this research proposal, but he passed away in 2022. Department of Civil Engineering, Faculty of Civil, Planning, And Geo-Engineering, Sepuluh Nopember Institute of Technology, INDONESIA

Mahendra Andiek Maulana, Sepuluh Nopember Institute of Technology

They are an assistant supervisor providing input and guidance on the content and structure of the article, grammar arrangement, and the substance of the discussion. Department of Civil Engineering, Faculty of Civil, Planning, And Geo-Engineering, Sepuluh Nopember Institute of Technology, INDONESIA

Wasis Wardoyo, Sepuluh Nopember Institute of Technology

They were the second supervisor who assisted in providing input and guidance for the development of research ideas, but they passed away in 2021. Department of Civil Engineering, Faculty of Civil, Planning, And Geo-Engineering, Sepuluh Nopember Institute of Technology, INDONESIA

Dedy Dwi Prastyo, Sepuluh Nopember Institute of Technology

They were the second supervisor who assisted in overall statistical analysis during the research development. Checking grammar and drafting this article. Department of Statistics, Sepuluh Nopember Institute of Technology, Indonesia

Bangun Muljo Sukojo, Sepuluh Nopember Institute of Technology

He was a professor specializing in remote sensing, thus, in the preparation of this research, he aided and provided input on remote sensing analysis, NDDI, NDWI, and NDVI. Department of Geomatics Engineering, Sepuluh Nopember Institute of Technology, Indonesia

References

Rosa, L., Chiarelli, D.D., Rulli, M.C., Dell’Angelo, J., and D’Odorico, P., Global Agricultural Economic Water Scarcity. Science Advances, 6(18), 2020.

Boer, R. and Subbiah, A.R., Agricultural Drought in Indonesia, in Monitoring and Predicting Agricultural Drought (Oxford University Press, 2005). doi:10.1093/oso/9780195162349.003.0037.

Surmaini, E., Hadi, T.W., Subagyono, K., and Puspito, N.T., Early Detection of Drought Impact on Rice Paddies in Indonesia by Means of Niño 3.4 Index, Theoretical and Applied Climatology, 121, 2015, pp. 669–684.

Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y., and Luce, C.H., A Review of the Relationships between Drought and Forest Fire in the United States, Global Change Biology, 22, 2016, pp. 2353–2369.

Fleig, A.K., Tallaksen, L.M., Hisdal, H., and Demuth, S., A Global Evaluation of Streamflow Drought Characteristics, Hydrology and Earth System Sciences, 10(4), 2006, pp. 535–552.

Torabi Haghighi, A., Abou Zaki, N., Rossi, P.M., Noori, R., Hekmatzadeh, A.A., Saremi, H., and Klove, B., Unsustainability Syndrome-From Meteorological to Agricultural Drought in Arid and Semi-Arid Regions, Water, 12(3), 2020, p. 838.

Van Loon, A.F., Hydrological Drought Explained, Wiley Interdisciplinary Reviews: Water, 2, 2015, pp. 359–392.

AghaKouchak, A., Mirchi, A., Madani, K., Baldassarree G.D., Nzemi, A., Alborzi, A., Anjileli, H., Azarderakhsh, M., Chiang, F., Hassanzadeh, E., Huning, L.S., Mallakpour, I., Martinez, A., Mazdiyasni, O., Moftakhari, H., Norouzi, H., Sadegh, M., Sadeqi, D., Loon, A.F.V., and Wanders, N., Anthropogenic Drought: Definition, Challenges, and Opportunities, Reviews of Geophysics, 59, 2021.

Stahl, K., Vidal, J.P., Hannaford, J., Tijdeman, E., Laaha, G., Gauster, T., and Tallaksen, L.M., The Challenges of Hydrological Drought Definition, Quantification and Communication: An Interdisciplinary Perspective, Proceedings of the International Association of Hydrological Sciences, 383, 2020, pp. 291–295.

Van Loon, A.F., Hydrological Drought Explained, WIREs Water, 2, 2015, pp. 359–392.

Garreaud, R.D., Boisier, J.P., Rondanelli, R., Maonetcinos, A., Sepulveda, H.H., and Veloso-Aguila, D., The Central Chile Mega Drought (2010–2018): A Climate Dynamics Perspective, International Journal of Climatology, 40, 2020, pp. 421–439.

Purwantoro, B.D., Hadiani, R.R.R., and Solichin, S., Analisis Kekeringan Hidrologi Berdasarkan Metode Ambang Batas (Threshold Level Method) di Daerah Aliran Sungai Keduang Kabupaten Wonogiri, Matriks Teknik Sipil, 7, 2019.

Yasa, I.W., Setiawan, A., Negara, I.D.G.J., Saidah, H., and Dirgantara, A.H., Sebaran Kekeringan Hidrologi Berdasarkan Debit Aliran di Kabupaten Bima, Ganec Swara, 17(1), 2023, pp. 72-80.

Kiprutto, N., Rotich, L.K., and Riungu, G.K., Agriculture, Climate Change and Food Security, Open Access Library Journal, 2, 2015, pp. 1–7.

Khetwani, S., Singh, R.B., and Moin, K., Impact of Drought, Farmers’ Adaptation Strategies and Administrative Mitigation Measure in the Marathwada Region, India, Environmental & Socio-economic Studies, 8, 2020, pp. 1–11.

Wilhite, D.A. and Glantz, M.H., Understanding: The Drought Phenomenon: The Role of Definitions, Water International, 10, 1985, pp. 111–120.

Smith, A.B. and Katz, R.W., US Billion-Dollar Weather and Climate Disasters: Data Sources, Trends, Accuracy and Biases, Natural Hazards, 67, 2013, pp. 387–410.

Mishra, A.K. and Singh, V.P., Drought Modeling – A Review, Journal of Hydrology, 403(1-2), 2011, pp. 157–175.

Beck, H.E., Pan, M., Miralles, D.G., Reichle, R.H., Dorigo, W.A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R.M., van Dijk, A.I.J.M., Du, J., Kimball, J.S., Vergopolan, N., and Wood, E.F., Evaluation of 18 Satellite- and Model-based Soil Moisture Products using In Situ Measurements From 826 Sensors, Hydrology and Earth System Sciences, 25(1), 2021, pp. 17–40.

Dalezios, N.R., Blanta, A., and Spyropoulos, N.V., Assessment of Remotely Sensed Drought Features in Vulnerable Agriculture, Natural Hazards and Earth System Sciences, 12, 2012, pp. 3139–3150.

Zhang, R., Shangguan, W., Liu, J., Dong, W., and Wu, D., Assessing Meteorological and Agricultural Drought Characteristics and Drought Propagation in Guangdong, China, Journal of Hydrology: Regional Studies, 51, 2024, 101611.

Patil, P.P., Jagtap, M.P., Khatri, N., Madan, H., Vadduri, A.A., and Patodia, T., Exploration and Advancement of NDDI Leveraging NDVI and NDWI in Indian Semi-Arid Regions: A Remote Sensing-based Study, Case Studies in Chemical and Environmental Engineering, 9, 2024, 100573.

Kogan, F.N., Application of Vegetation Index and Brightness Temperature for Drought Detection, Advances in Space Research, 15, 1995, pp. 91–100.

Hao, C., Zhang, J., and Yao, F., Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring Over Southwest China, International Journal of Applied Earth Observation and Geoinformation, 35, 2015, pp. 270–283.

Kogan, F.N. and Zhu, X., Evolution of Long-term Errors in NDVI Time Series: 1985–1999, Advances in Space Research, 28, 2001, pp. 149–153.

Zhang, R., Chen, T., and Chi, D., Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China, Sustainability, 12, 2020, 1713.

Kamble, M.V., Ghosh, K., Rajeevan, M., and Samui, R.P., Drought Monitoring over India through Normalized Difference Vegetation Index (NDVI), Mausam, 61(4), 2010, pp. 537–546.

Sahoo, A.K., Sheffield, J., Pan, M., and Wood, E.F., Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for Assessment of Large-scale Meteorological Drought, Remote Sensing of Environment, 159, 2015, pp. 181–193.

Liu, D. et al., Performance of SMAP, AMSR-E and LAI for Weekly Agricultural Drought Forecasting over Continental United States, Journal of Hydrology, 553, 2017, pp. 88–104.

Guha, S., Govil, H., and Diwan, P., Analytical Study of Seasonal Variability in Land Surface Temperature with Normalized Difference Vegetation Index, Normalized Difference Water Index, Normalized Difference Built-Up Index, and Normalized Multiband Drought Index, Journal of Applied Remote Sensing, 13(2), 2019, 024518.

Pech May, F., Sánchez Hernández, J.V., and Sánchez Jacinto, H., Análisis de Zonas de Cultivo Y Cuerpos de Agua Mediante El Cálculo de Ãndices Radiométricos Con Imágenes Sentinel-2, Lámpsakos, 48, 2021. doi: 10.21501/21454086.3601.

Alvarado, C., Leandro, A., and Sarango, D., Comparación de Ãndices de Vegetación Con Imágenes Landsat Usando La Computación En La Nube: Zona Pampa De Majes-Siguas, Arequipa Perú (Periodo: Jun 1984 a Nov 2018), Revista de Investigación de Física, 22, 2021, pp. 27–34.

Heydari, H., Valadan Zoej, M., Maghsoudi, Y., and Dehnavi, S., An Investigation of Drought Prediction using Various Remote-Sensing Vegetation Indices for Different Time Spans, International Journal of Remote Sensing, 39, 2018, pp. 1871–1889.

Gu, Y., Brown, J.F., Verdin, J.P., and Wardlow, B., A Fiveâ€year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment over the Central Great Plains of the United States, Geophysical Research Letters, 34, 2007, L06407.

Jiao, W., Tian, C., Chang, Q., Novick, K.A., and Wang, L., A New Multi-sensor Integrated Index for Drought Monitoring, Agricultural and Forest Meteorology, 268, 2019, pp. 74–85.

Córdova Aguilar, H., Vulnerabilidad Y Gestión Del Riesgo de Desastres Frente Al Cambio Climático En Piura, Perú, Semestre Económico, 23, 2020, pp. 85–112.

Dzakiyah, I.F., Saraswati, R., and Pamungkas, F.D., The Potential of Agricultural Land Drought using Normalized Difference Drought Index in Ciampel Subdistrict Karawang Regency, International Journal on Advance Science, Engineering, and Information Technology, 12(3), 2022, p. 908-914.

Perdana, A.M.P., Pratama, A.Y., Fauzi, A.I., Welly, T.K., and Nurtyawan, R., Analisis Spasio-temporal Kekeringan pada Lahan Sawah di Lampung Selatan Berbasis Pengolahan Normalized Difference Drought Index pada Citra Satelit Landsat 8, Jurnal Geosains dan Remote Sensing, 3, 2022, pp. 1–9.

Noraini, A., Tjahjadi, M.E., and Sudiasa, I.N., Identifikasi Kekeringan Lahan Kabupaten Lamongan Berdasarkan Citra Satelit, Buletin Poltanesa, 23, 2022.

Affandy, N.A., Iranata, D., Anwar, N., Maulana, M.A., Prastyo, D.D., Jaelani, L.M., and Suyadi, F.X., Modelling Causality between Agricultural and Meteorological Drought Indices in the Corong River Basin, East Java Indonesia, Journal of Water and Land Development, 58, 2023, pp.178-188. doi: 10.24425/jwld.2023.146610.

Du, T.L.T., Bui, D.D.B, Nguyen, M.D., and Lee, H., Satellite-based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam, Water, 10, 2018, pp. 659.

Xie, F. and Fan, H., Deriving Drought Indices from MODIS Vegetation Indices (NDVI/EVI) and Land Surface Temperature (LST): Is Data Reconstruction Necessary?, International Journal of Applied Earth Observation and Geoinformation, 101, 2021, p. 102352.

Yasa, I.W., Bisri, M., Sholichin, M., and Andawayanti, U., Hydrological Drought Index based on Reservoir Capacity – Case Study of Batujai Dam in Lombok Island, West Nusa Tenggara, Indonesia, Journal of Water and Land Development, 38, 2018, pp.155–162.

Nuf’a, H., Limantara, L.M., and Soetopo, W., Optimasi Air Waduk Gondang dengan Metode Dinamik Deterministik, Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 7, 2016, pp. 25–36.

Hoyer, P.O., Shimizu, S., Kerminen, A.J., and Palviainen, M., Estimation of Causal Effects using Linear Non-Gaussian Causal Models with Hidden Variables, International Journal of Approximate Reasoning, 49, 2008, pp. 362–378.

Zahroh, N.F. and Syafira, S.A., Identifikasi Kekeringan Hidrologi di Das Citarum Hulu, Jurnal Sains & Teknologi Modifikasi Cuaca, 16, 2015, p. 21.

Niemeyer, S., New Drought Indices, in Méditerranéennes. Série A: Séminaires Méditerranéens, 80, 2008, pp. 267–274.

Budianto, M.B., Putra, I.G., and Saidah, H., Indeks Kekeringan Hidrologi Berdasarkan Debit (Studi Kasus Daerah Aliran Sungai Sidutan), Spektrum Sipil, 7, 2020, pp. 115–125.

Avicenna, A.K., Hadiani, R., and Solichin, Indeks Kekeringan Hidrologi di Das Keduang berdasarkan Metode Flow Duration Curve (FDC), Matriks Teknik Sipil, 3(3), 2015, pp. 824-829.

Zhang, H., Ma, J., Chen, C., and Tian, X., NDVI-Net: A Fusion Network for Generating High-Resolution Normalized Difference Vegetation Index in Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 168, 2020, pp. 182–196.

Ren, Y., Zhang, F., Zhao, C., and Cheng, Z., Attribution of Climate Change and Human Activities to Vegetation NDVI in Jilin Province, China during 1998–2020, Ecological Indicators, 153, 2023, 110415.

Gao, B., NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space, Remote Sensing of Environment, 58(3), 1996, pp. 257–266.

Giovanni, N., Identifikasi Kekeringan Padi Sawah dengan Indeks NDDI dan VHI dari Citra Landsat 8 di Kabupaten Subang, Bogor Agricultural University, 2018.

Van Loon, A.F. and Van Lanen, H.A.J, A Process-based Typology of Hydrological Drought, Hydrology and Earth System Sciences, 16(7), 2012, pp. 1915–1946.

Hadiani, R., Analisis Kekeringan Berdasarkan Data Hidrologi, Universitas Brawijaya, Malang, 2009.

Metcalfe, A.V. and Cowpertwait, P.S.P., Introductory Time Series with R., Springer New York, New York, NY, 2009. doi: 10.1007/978-0-387-88698-5.

Ezzine, H., Bouziane, A., and Ouazar, D., Seasonal Comparisons of Meteorological and Agricultural Drought Indices in Morocco using Open Short Time-Series Data, International Journal of Applied Earth Observation and Geoinformation, 26, 2014, pp. 36–48. Available at: https://doi.org/10.1016/j.jag.2013.05.005.

Zuo, D., Cai, S., Xue, Z., Peng, D., Kan, G., Sun, W., Pang, B., and Yang, H., Assessment of Meteorological and Agricultural Droughts using In-Situ Observations and Remote Sensing Data, Agricultural Water Management, 222, 2019, pp. 125–138.

Maina, M.P., Drought Monitoring and Assessment using Remote Sensing, 2018. Available at: https://library.itc.

utwente.nl/papers_2018/ msc/wrem/muiruri.pdf (Accessed: July 18, 2023).

Adhyani, N.L., June, T., and Sopaheluwakan, A., Exposure to Drought: Duration, Severity and Intensity (Java, Bali and Nusa Tenggara), IOP Conference Series: Earth and Environmental Science, 58, 2017, 012040.

Benedict and Jaelani, L.M., A Long-term Spatial and Temporal Analysis of NDVI Changes in Java Island using Google Earth Engine, IOP Conference Series: Earth and Environ Science, 936, 2021, 012038.

Downloads

Published

2024-09-13

How to Cite

Affandy, N. A., Iranata, D., Anwar, N., Maulana, M. A., Wardoyo, W., Prastyo, D. D., & Sukojo, B. M. (2024). The Relationship between Hydro-Agricultural Drought in the Corong River Basin: A Causal Time Series Regression Model. Civil Engineering Dimension, 26(2), 173–190. https://doi.org/10.9744/ced.26.2.173-190

Most read articles by the same author(s)